Skip to main content

Gas Separations with Inorganic Membranes

  • Chapter

Abstract

This chapter will deal with the application of inorganic membranes in gas separations. Because the separation mechanisms differ significantly, the inorganic membranes will be divided into two categories: porous inorganic membranes and nonporous ones. Examples of porous membranes are, e.g. Vycor glass, alumina membranes and carbon molecular sieve membranes and those for nonporous membranes are metal membranes and liquid- immobilized membranes (LIM), in which the liquid is a molten salt (Pez and Carlin 1986). Important transport and separation mechanisms in porous membranes are Knudsen diffusion (gas phase transport), surface diffusion (surface transport), multilayer diffusion and capillary condensation. When the pore size of the medium is of molecular dimensions, the transport mechanism is molecular sieving or micropore diffusion. In nonporous membranes the transport is by solution of the (gas) molecules in the membrane, followed by diffusion of the species through the membrane and finally dissolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

outer membrane surface, m2

Ds :

surface diffusion coefficient, m2-s-1

F0 :

permeabihty, mol/m2-s-Pa

J:

flux, mol-m-2-s-1

Kn :

Knudsen number,

L, l:

membrane thickness, m

M:

molar mass, kg-mol-1

P0 :

corrected permeabihty, m3-m-m-2-h-1-bar-1P pressure,N-m-2

q:

surface occupation, mol-kg-1

r:

pore radius, m

R:

gas constant, 8.314 J-mol-1-K-1

T:

temperature, K

\(\bar v\) :

mean molecular speed, m-s-1

Ε:

porosity

η:

viscosity, N-s-m-2

λ:

mean free path, m

μ:

shape factor

ρapp :

apparent density, kg-m-3

Pn:

Knudsen regime

P:

Poiseuille flow regime

g:

gas phase

s:

surface phase

References

  • Abe, F. 1986. A separation membrane and process for manufacturing the same. European Patent Appl. 0, 195, 549.

    Google Scholar 

  • Ansorge, W. 1985. Membrane for separation of gases from gas mixture and method of its preparation. German Patent 3, 421, 833A1.

    Google Scholar 

  • Asaeda, M. and L. D. Du. 1986. Separation of alcohol/water gaseous mixtures by a thin ceramic membrane. J. Chem. Eng. Japan 19(1): 72–77.

    Article  CAS  Google Scholar 

  • Asaeda, M. and L. D. Du. 1986. Separation of alcohol/water gaseous mixture by an improved ceramic membrane. J. Chem. Eng. Japan 19(1): 84–85.

    Article  CAS  Google Scholar 

  • Ash, R., R. M. Barrer and C. G. Pope. 1963. Flow of adsorbable gases and vapors in a microporous medium. Proc. Roy. Soc. A271: 1–18.

    Google Scholar 

  • Barner, R. M. 1951. Diffusion in and Through Solids. University Press, New York.

    Google Scholar 

  • Bhave, R. R., J. Gillot and P. K. T. Liu. 1989. High temperature gas separations for coal offgas cleanup with microporous ceramic membranes. Paper 124f read at AIChE Annual Meeting, 5–10 November 1989, San Francisco.

    Google Scholar 

  • Bird, A. J. and D. L. Trimm. 1983. Carbon molecular sieves used in gas separation membranes. Carbon 21(3): 177–80.

    Article  CAS  Google Scholar 

  • Carman, P. C. and F. A. Raal. 1950. Capillary condensation in physical adsorption. Proc. Roy. Soc. A203: 165–178.

    Google Scholar 

  • Crull, A. 1989. Inorganic Membranes: Markets, Technologies, Players. Business Communications Company., Inc. Norwalk, CT.

    Google Scholar 

  • Cunningham, R. E. and R. J. J. Williams. 1980. Diffusion in Gases and Porous Media. Plenum Press, New York.

    Google Scholar 

  • de Rosset, A. J. 1960. Diffusion of H2 through Pd membranes. Ind. Eng. Chem. 52(6): 525–28.

    Article  Google Scholar 

  • Eberley, P and D. Vohsberg. 1965. Diffusion of CeHg and inert gases through porous media at elevated temperatures and pressures. Trans. Faraday Soc. 61: 2724–35.

    Article  Google Scholar 

  • Egan, B. Z. 1989. Using Inorganic Membranes to Separate Gases: R&D Status Review. Internal report ORNL/TM-11345, Oak Ridge National Laboratory.

    Google Scholar 

  • Evans, R. B., G. M. Watson and E. A. Mason. 1961. Gaseous diffusion in porous media at uniform pressure. J. Chem. Phys. 35: 2076–83.

    Article  CAS  Google Scholar 

  • Evans, R. B., G. M. Watson and E. A. Mason. 1962. Gaseous diffusion in porous media: (II) effect of pressure gradients. J. Chem. Phys. 36: 1894–902.

    Article  CAS  Google Scholar 

  • Feng, C. and W. E. Stewart, 1973. Practical models for isothermal diffusion and flow of gases in porous solids. Ind. Eng. Chem. Fundam. 12(2): 143–47.

    Article  CAS  Google Scholar 

  • Feng, C., V. V. Kostrov and W. E. Stewart. 1974. Multicomponent diffusion of gases in porous solids. Models and experiments. Ind. Eng. Chem. Fundam. 13(1): 5–9.

    Article  CAS  Google Scholar 

  • Furneaux, R. C. and A. P. Davidson. 1987. Composite membranes. European Patent. Appl. 242,209.

    Google Scholar 

  • Gavalas, G. R., C. Megiris and S. W. Nam. 1989. A novel composite inorganic membrane for combined catalytic reaction and product separation. Chem. Eng. Sci. 44(9): 1829–35.

    Article  CAS  Google Scholar 

  • Gilliland, E., R. F. Baddour and J. L. Russel. 1958. Rates of flow through microporous solids. A.I.Ch.E. J. 4: 90–96.

    Article  CAS  Google Scholar 

  • Gilliland, E., R. F. Baddour and G. P. Perkinson. 1974. Diffusion on surfaces. Effect of concentration on the diffusivity of physically adsorbed gases. Ind. Eng. Fundam. 13: 95–100.

    Article  CAS  Google Scholar 

  • Gryaznov, V. M. 1986. Surface catalytic properties and hydrogen diffusion in palladium alloy membranes. Z. Phys. Chem. Neue Folge 147: 761–70.

    Article  Google Scholar 

  • Gryaznov, V. M. and S Mirnov. 1977. Selective hydrogénation on membrane catalysts. Kinetics and Catalysis 3: 485–87.

    Google Scholar 

  • Gryaznov, V. M., M. M. Ermilova, L. D. Gogua and S. I. Zavodchenko. 1980. Gas permeability of composite membrane catalysts. Bulletin Academy Sciences USSR, Division of chemical sciences 29(4): 529–32.

    Article  Google Scholar 

  • Gunn, R. D. and C. J. King. 1969. Mass transport in porous materials under combined gradients of composition and pressure. A.I.Ch.E. J. 15: 507–14.

    Article  CAS  Google Scholar 

  • Hammel, J. J., W. P. Marshall, W. J. Robertson and H. W. Barch. 1987. Porous inorganic siceous-containing gas enriching material and process of manufacture and use. European Patent. Appl. 248, 391.

    Google Scholar 

  • Hammel, J. J., W. P. Marshall, W. J. Robertson and H. W. Barch. 1987. Porous inorganic siliceous-containing gas enriching material and process of manufacture and use. European Patent. Appl. 248, 392.

    Google Scholar 

  • Hsieh, H. P., R. R. Bhave and H. L. Fleming. 1988. Microporous alumina membranes. J. Membrane Sci. 39: 221–43.

    Article  CAS  Google Scholar 

  • Itaya, K., S. Sugawara, K. Arai and S. Saito. 1984. Properties of porous anodic aluminum oxide films as membranes. J. Chem. Eng. Japan 17(5): 514–20.

    Article  CAS  Google Scholar 

  • Kameyama, T., K. Fukuda and M. Dokiya. 1980. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes. In Hydrogen Energy Progress, Proc. 3rd World Hydrogen Energy Conference, eds. T. N. Veziroglu, K. Fueki and T. Ohta, pp. 569–79, Tokyo, Japan.

    Google Scholar 

  • Kameyama, T., K. Fukuda and M. Dokiya. 1981. Possibihty for effective production of hydrogen from hydrogen sulfide by means of a porous Vycor glass membrane. Ind. Eng. Chem. Fundam. 20: 97–99.

    Article  CAS  Google Scholar 

  • Keizer, K., R. J. R. Uhlhorn, R. J. van Vuren and A. J. Burggraaf. 1988. Gas separation mechanisms in microporous modified Y-AI2O3 membranes. J. Membr. Sci. 39: 285–300.

    Article  CAS  Google Scholar 

  • Konno, M., M. Shindo, S. Sugawara and S. Saito. 1988. A composite palladium and porous aluminum oxide membrane for hydrogen gas separation. J. Membr. Sci. 37: 193–97.

    Article  CAS  Google Scholar 

  • Koresh, J. E. and A. Soffer. 1980. Study of molecular sieve carbons. Part I. Pore structure, gradual pore opening and mechanism of molecular sieving. J. Chem. Soc. Faraday. Trans. 76(2): 2457–71.

    CAS  Google Scholar 

  • Koresh, J. E. and A. Soffer. 1980. Study of molecular sieve carbons. Part II. Estimation of cross- sectional diameters of non-spherical molecules. J. Chem. Soc. Faraday. Trans. 76(2): 2472–85.

    CAS  Google Scholar 

  • Koresh, J. E. and A. Soffer. 1980. Molecular sieving range of pore diameters of adsorbents. J. Chem. Soc. Faraday. Trans. 76(2): 2507–09.

    CAS  Google Scholar 

  • Koresh, J. E. and A. Soffer. 1983. Molecular sieve carbon permselective membrane. Part I. Presentation of a new device for gas mixture separation. Sep. Sci. Technol 18(8): 723–34.

    Article  CAS  Google Scholar 

  • Koresh, J. E. and A. Soffer. 1987. The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Sep. Sci. Technol. 22(2): 973–82.

    Article  CAS  Google Scholar 

  • Lee, K. H. and S. T. Hwang. 1986. The transport of condensible vapors through a microporous Vycor glass membrane. J. Colloid, Interf. Sci. 110(2): 544–55.

    Article  CAS  Google Scholar 

  • Lee, K. H. and S. J. Khang. 1986. A new silicon-based material formed by pyrolysis of sihcon rubber and its properties as a membrane. Chem. Eng. Commun. 44: 121–32.

    Article  CAS  Google Scholar 

  • Lee, K. H. and S. J. Khang. 1987. High temperature membrane. U.S. Patent 4, 640, 901.

    Google Scholar 

  • Mason, E. A., A. P. Mahnauskas and R. B. Evans. 1967. Flow and diffusion of gases in porous media.J. Chem. Phys. 36: 3199–216.

    Article  Google Scholar 

  • Okazaki, M., H. Tamon and R. Toei. 1981. Interpretation of surface flow phenomenon of adsorbed gases by hopping model. A.I.Ch.E. J. 27(2): 271–77.

    Article  Google Scholar 

  • Okubo, T. and H. Inoue. 1989. Introduction of specific gas selectivity to porous glass membranes by treatment with tetra ethoxy silane. J. Membrane Sci. 42: 109–117.

    Article  CAS  Google Scholar 

  • Pez, G. and M. Carlin. 1986. Method for gas separation. European Patent Appl. 0,194,483.

    Google Scholar 

  • Ponzi, M., J. Papa, J. B. Rivarola and G. Zgrablich. 1977. On the surface diffusion of adsorbable gases through microporous media. A.I.Ch.E. J. 23: 347–52.

    Article  CAS  Google Scholar 

  • Present, R. D. and A. J. de Bethune. 1949. Separation of a gas mixture flowing through a long tube at low pressure. Phys. Rev. 75: 1050–57.

    Article  CAS  Google Scholar 

  • Price, F. C. 1965. Palladium diffusion yields high-volume hydrogen. Chem. Eng. 72(5): 36–38.

    Google Scholar 

  • Rhim, H. and S. T. Hwang. 1975. Transport of capillary condensate. J. Colloid. Interf. Sci. 52: 174–81.

    Article  CAS  Google Scholar 

  • Rothfeld, L. D. 1963. Gaseous counterdiffusion in catalyst pellets. A.I.Ch.E. J. 9: 19–24.

    Article  CAS  Google Scholar 

  • Rodicker, H. 1974. Separating gas mixtures using metal coated membranes. East German Patent 107,859.

    Google Scholar 

  • Schultz, G. and U. Werner. 1982. Membrane for gas separation. Vt. Verfahrenstechnik 16(4): 244–46.

    Google Scholar 

  • Scott, D. S. and F. A. L. Dullien. 1962. Diffusion of ideal gases in capillaries and porous solids. A.I.Ch.E. J. 8: 113–17.

    Article  CAS  Google Scholar 

  • Shindo, Y., T. Hakuta, H. Yoshitome and H. Inoue. 1983. Gas diffusion in microporous media in Knudsen regime. J. Chem. Eng. Japan 16(2): 120–26.

    Article  CAS  Google Scholar 

  • Shindo, Y., T. Hakuta, H. Yoshitome and H. Inoue. 1984. Separation of gases by means of a porous glass membrane at high temperatures. J. Chem. Eng. Japan 17(6): 650–52.

    Article  CAS  Google Scholar 

  • Smithells, C. J. 1937. Gases and Metals. John Wiley & Sons, New York.

    Google Scholar 

  • Suzuki, F., K. Onozato and Y. Kurokawa. 1987. Gas permeability of a porous alumina membrane prepared by the sol-gel process. J. Non-Cry st. Solids 94: 160–62.

    Article  CAS  Google Scholar 

  • Suzuki, H. 1987. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeohte and processes for production thereof. U.S. Patent 4, 699, 892.

    Google Scholar 

  • Tamon, H, S. Kyotani, H. Wada, M. Okazaki, and R. Toei. 1981. Surface flow phenomenon of adsorbed gases in porous media. J. Chem. Eng. Japan 14(2): 136–41.

    Article  CAS  Google Scholar 

  • Tamon, H., M. Okazaki and R. Toei. 1981. Flow mechanism of adsórbate through porous media in presence of capillary condensation. A.I.Ch.E. J. 27(2): 271–76.

    Article  CAS  Google Scholar 

  • Toei, R., H. Imakoma, H. Tamon and M. Okazaki. 1983. Water transfer coefficient in adsorptive porous body. J. Chem Eng. Japan 16(5): 364–69.

    Article  CAS  Google Scholar 

  • Uemiya, S., Y. Kude, K. Sugino, N. Sato, T. Matsuda and E. Kirkuchi. 1988. A palladium/ porous-glass composite membrane for hydrogen separation. Chem. Lett. 10: 1687–90.

    Article  Google Scholar 

  • Uhlhorn, R. J. R. 1990. Ceramic Membranes for Gas Separation: Synthesis and Gas Transport Properties, Ph.D. thesis. University of Twente, Enschede.

    Google Scholar 

  • Uhlhorn, R. J. R., K. Keizer and A. J. Burggraaf. 1989. Gas and surface diffusion in (modified) y- alumina systems. J. Membrane Sci. 46: 225–46.

    Article  CAS  Google Scholar 

  • Uhlhorn, R. J. R., M. H. B. J. Huis in’t Veld, K. Keizer and A. J. Burggraaf. 1989. High permselectivities of microporous silica modified y-alumina membranes J. Mater. Sci. Lett. 8: 1135–38.

    Article  CAS  Google Scholar 

  • van Vuren, R. J., B. Bonekamp, R. J. R. Uhlhorn, K. Keizer, H. J. Veringa and A. J. Burggraaf. 1987. Formation of ceramic alumina membranes for gas separation. In Materials Science Monographs 38c (High Tech Ceramics), ed. P. Vincenzini, pp. 2235–46., Elsevier, Amsterdam.

    Google Scholar 

  • Wakao, N., J. Otani and J. M. Smith. 1965. Significance of pressure gradients in porous materials Part I: diffusion and flow in fine capillaries. A.I.Ch.E. J. 11: 435–39.

    Article  CAS  Google Scholar 

  • Wakao, N., J. Otani and J. M. Smith. 1965. Part II: diffusion and flow in porous catalyst. A.I.Ch.E. J. 11: 439–45.

    Article  Google Scholar 

  • Weaver, J. A. and A. B. Metzner. 1966. The surface transport of adsorbed molecules.A.I.Ch.E. J. 12: 655–61.

    Article  CAS  Google Scholar 

  • Yunoshin, I. 1967. A silver membrane for oxygen diffusion cell. West German Patent 1, 244, 738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Uhlhorn, R.J.R., Burggraaf, A.J. (1991). Gas Separations with Inorganic Membranes. In: Inorganic Membranes Synthesis, Characteristics and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6547-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6547-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6549-5

  • Online ISBN: 978-94-011-6547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics