Skip to main content

Liquid Filtration and Separation with Inorganic Membranes: Operating Considerations and some Aspects of System Design

  • Chapter
Inorganic Membranes Synthesis, Characteristics and Applications

Abstract

There are a variety of industrially important liquid phase systems where membrane technology has been successfully applied for separation purposes. Such membrane processes as microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO) using polymeric membranes have been in commercial use for over two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a, A:

constants for a given liquid

dU/dr:

shear rate

F0 :

initial flux

Fα :

filtrate flux when a fraction of pores (a) is blocked

n:

number of monolayers of particles

P1 :

tube-side (feed) inlet pressure

P2 :

permeate outlet pressure

P3 :

tube-side (retentate) outlet pressure

Q:

total permeate rate, Equation (5.8), m3/h

Q1 :

permeate rate, m3/h

Q3 :

flow rate of retentate. Equation (5.7), m3/h

t:

duration of operation, h

V0 :

system dead volume, m3

Vc :

volumetric concentration factor expressed as retentate concentration/feed concentration based on volume/flow considerations

α:

fraction of the pores blocked

α':

minimum retention ratio. Equation (5.3)

α 1 :

initial permeate rate at = 1, Equation (5.8)

α 2 :

experimentally determined parameter. Equation (5.8)

ΔPB :

pressure differential between the permeate-side and feed-side under the backflushing condition

ΔPT :

transmembrane pressure

Ï„:

shear stress

References

  • Bhave, R. R. and H. L. Fleming. 1988. Removal of oily contaminants in wastewater with microporous alumina membranes. A.LCh.E. Symp. Ser. 84(261): 19–27.

    CAS  Google Scholar 

  • Bhave, R. R., J. Gillot and P. K. T. Liu. 1989. High temperature gas separations for coal offgas cleanup using microporous ceramic membranes. Paper read at the 1st Intl. Conf. Inorganic Membranes, 3–7 July 1989, Montpelher.

    Google Scholar 

  • Cartwright, P. S. 1985. Membrane separations technology for industrial effluent treatment— a review. Desalination 56: 17–35.

    Article  CAS  Google Scholar 

  • Chen, S. C., J. T. Flynn, R. G. Cook and A. Cassiday. 1991. Removal of oil, grease and suspended solids from produced water using ceramic crossflow microfiltration. SPE Production Engineering (in press).

    Google Scholar 

  • Cheryan, M. 1986. Ultrafiltration Handbook, pp. 151, 188 and 193. Technomic Pubhshing Co., Lancaster, PA.

    Google Scholar 

  • Chong, R., P. Jelen and W. Wong. 1985. The effect of cleaning agents on a noncellulosic ultrafiltration membrane. Sep. Sci. Technol. 20: 393–402.

    Article  CAS  Google Scholar 

  • Gach, G. J. 1986. Crossflow membrane filtration expands role in water treatment. Power 130: 65–70.

    CAS  Google Scholar 

  • Galaj, S., A. Wicker, J. P. Dumas, J. Gillot and D. Garcera. 1984. Crossflow microfiltration and backflushing on ceramic membranes. Le Lait 64: 129–41.

    Article  Google Scholar 

  • Gillot, J. 1990. (personal communication).

    Google Scholar 

  • Gillot, J., G. Brinkman and D. Garcera. 1984. New ceramic filter media for crossflow microfiltration and ultrafiltration. In Filtra 84 Conference, 2–4 October, Paris.

    Google Scholar 

  • Gillot, J., M. Soria and D. Garcera. 1990. Recent developments in the Membralox® ceramic membranes. Proc. 1st Intl. Conf. Inorganic Membranes, 3–7 July, 379–81. Montpellier.

    Google Scholar 

  • Gramms, L., D. Comstock and D. Hagen. 1984. Hydroperm lime softening—A case history. Proc. 45 th Intl. Water Conf, p. 41. Engineers Society of Western Pennsylvania, Pittsburgh, PA.

    Google Scholar 

  • Hoogland, M. R., A. G. Fane and C. J. D. Fell. 1990. The effect of pH on the crossflow filtration of mineral slurries using ceramic membranes.Proc. 1st Intl. Conf. Inorganic Membranes, 3–7 July, 153–62. Montpellier.

    Google Scholar 

  • Hsieh, H. P., R. R. Bhave and H. L. Fleming. 1988. Microporous alumina membranes. J. Membrane Sci. 39: 221–41.

    Article  CAS  Google Scholar 

  • Lee, S., Y. Aurelle and H. Roques. 1984. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil. J. Membrane Sci. 19: 23–38.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985a. The preparation and characterization of alumina membranes with ultrafine pores. Part 3. The permeabihty for pure liquids. J. Membrane Sci. 24: 245–66.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985b. The preparation and characterization of alumina membranes with ultrafine pores. Part 4. Ultrafiltration and hyperfiltration experiments. J. Membrane Sci. 24: 261–70.

    Article  CAS  Google Scholar 

  • Malmberg, R. and S. Holm. 1988. Low bacteria skim milk by microfiltration. North. Eur. Food Dairy J. 1: 75–77.

    Google Scholar 

  • Matsumoto, Y., S. Nakao and S. Kimura. 1988. Crossflow filtration of solutions of polymers using ceramic microfiltration. Intl. Chem. Eng. 28(4): 677–83.

    Google Scholar 

  • Maubois, M. L. 1990. (personal communication).

    Google Scholar 

  • Norton company. 1984. Ceraflo®: Testing tubular crossflow modules. Technical brochure.

    Google Scholar 

  • Paulson, D. J., R. L. Wilson and D. D. Spatz. 1984. Crossflow membrane technology and its applications. Food Technol. 38: 77–87.

    CAS  Google Scholar 

  • Porter, M. C. 1986. Microfiltration. NATO ASI Ser. Vol. 181. Synthetic Membranes: Science, Engineering and Applications, ed. M. B. Chenoweth pp. 225–47

    Google Scholar 

  • Sandblom, R. M. 1978. Filtering process. U.S. Patent 4, 105, 547.

    Google Scholar 

  • Société des Ceramiques Techniques (SCT)/Alcoa. 1987. Membralox® Microfiltration and UltrafH- tration User’s Manual.

    Google Scholar 

  • Tragardh, G. and P. Wahlgren. 1990. Removal of bacteria from beer using crossflow microfiltration.Proc. 1st Intl. Conf Inorganic Membranes, 3–7 July, 291–95. Montpellier.

    Google Scholar 

  • van Gassel, T. J. and S. Ripperger. 1985. Crossflow microfiltration in the process industry. Desalination 53: 373–87.

    Article  Google Scholar 

  • Zydney, A. L. and C. K. Colton. 1986. A concentration polarization model for the filtrate flux in crossflow microfiltration in particulate suspensions. Chem. Eng. Commun. 47: 1–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Bhave, R.R. (1991). Liquid Filtration and Separation with Inorganic Membranes: Operating Considerations and some Aspects of System Design. In: Inorganic Membranes Synthesis, Characteristics and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6547-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6547-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6549-5

  • Online ISBN: 978-94-011-6547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics