Skip to main content

Permeation and Separation Characteristics of Inorganic Membranes in Liquid Phase Applications

  • Chapter
Inorganic Membranes Synthesis, Characteristics and Applications

Abstract

The principle of separation using microfiltration (MF) and ultrafiltration (UF) is based on the concept of size exclusion or sieving. The transport through porous inorganic membrane barriers occurs through the inter- granular spaces (and not through the granular particles themselves) within the top membrane layer, porous sublayers (in the case of asymmetric membrane structure) and the porous support structure (Hsieh 1988, Hsieh, Bhave and Fleming 1988). In contrast, the transport across polymeric membrane structures occurs through the continuous network of openings (i.e. the actual pores) from one face to the other. In practice, however, neither of these idealized pore structure is useful to completely predict or interpret the observed filtration performance. This is due to the occurrence of secondary phenomena such as interaction of solute or solvent with the membrane material and concentration polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

surface area of contact, m2

Ak :

ratio of total cross-sectional area to pore area

Cb :

solute concentration in the bulk, g-mol/m3

Cp :

solute concentration in the permeate solution, g-mol/m3

Cg :

solute concentration at which gel formation occurs, g-mol/m3

Cs :

solute concentration at the membrane surface, g-mol/m3

Cw :

solute concentration at the wall, g-mol/m3

d:

equivalent hydraulic diameter. Equation (4.18), m

dp :

pore diameter, m

ds :

solute molecular diameter, m

D:

solute (or particle) diffusivity, Equations (4.1)-(4.13), m2/s

D0 :

diffusion coefficient constant. Equation (4.30), m2/s

Ds :

solute diffusity. Equations (4.19)-(4.30), m2/s

ΔEa :

activation energy, J-K/kcal

f0,ft :

parameters defined by Equation (4.16)

F:

permeate flow rate, m3/s

J:

average filtration flux, m3/m2-s or m/s

Jm :

molar flux of permeating component, g-mol/m2-s

Jv :

volume flux, m3/s

k:

mass transfer coefficient in the boundary-layer adjacent to the membrane surface, m/s

K:

Bolzmann constant, J/kcal

L:

channel length, m

N:

areal pore density, m-2

NRe :

Reynolds number

Nsc :

Schmidt number

Nsh :

Sherwood number

P1, P2 :

upstream and downstream pressures, respectively, Pa pressure difference (feed to retentate). Pa

ΔPT :

transmembrane pressure, Pa

Q:

solute permeabihty, m3/m2-h-Pa

Qm :

overall (or effective) membrane permeability, m3/m2-s-Pa

Qw :

water permeabihty, m3/m2-h-Pa

r0 :

particle radius, m or μm

Ra :

resistance due to adsorption, m2-Pa-s/m3

Rb :

resistance due to the boundary layer, m2-Pa-s/m3

Rc :

cake resistance Equation (4.11), Pa-s/m3

Rg :

resistance due to gel layer, m2-Pa-s/m3

Rm :

membrane resistance, m2-Pa-s/m3 in Equation (4.6) or m/s in Equation (4.28)

Robs :

experimentally observed rejection coefficient

Rt :

theoretical membrane rejection coefficient defined by Equation (4.21)

Si :

internal surface area per unit volume of the porous medium, m-1

Sp :

particle surface area, m2

Sw :

wall shear rate, s-1

tm :

membrane layer thickness, m or μm

T:

absolute temperature, K

Vp :

particle volume, m3

x:

axial coordinate, Equation (4.13), m

α:

parameter defined as (ds/dp) in Equation (4.20)

β:

Kozeny-Carman constant, Equation (4.15)

δ:

boundary-layer thickness, m

δc :

particle cake thickness, μm

ε:

porosity of membrane layer. Equation (4.15) or cake porosity, Equation (4.11)

μ:

fluid viscosity, Pa-s

Δ π:

osmotic pressure difference, Pa

σ:

reflection coefficient

References

  • Altena, F. W. and G. Belfort. 1984. Lateral migration of spherical particles in porous flow channels: application to membrane filtration. Chem. Eng. Sci. 39: 343–355.

    Article  CAS  Google Scholar 

  • Baker, R. W. and H. Strathmann. 1970. Ultrafiltration of macromolecular solutions with high- flux membranes. J. Appl. Poly. Sci. 14: 1197–214.

    Article  CAS  Google Scholar 

  • Bansal, I. K. 1977. Progress in developing membrane systems for treatment of forest products and food processing effluents. A.I.Ch.E. Symp. Ser. 73(166): 144–51.

    CAS  Google Scholar 

  • Bauser, H., H. Chmiel, N. Stroh and E. Wahtza. 1982. Interfacial effects with microfiltration membranes. J. Membrane Sci. 11: 321–32.

    Article  CAS  Google Scholar 

  • Bhave, R. R. and H. L. Fleming. 1988. Removal of oily contaminants in wastewater with microporous alumina membranes. A.LCh.E. Symp. Ser. 84(261): 19–27.

    CAS  Google Scholar 

  • Bhave, R. R. and J. L. Filson. 1989. Performance characteristics of ceramic membranes in chemical and biochemical separations. Paper read at the 1st Intl. Conf. Inorganic Membranes, 3–7 July 1989, Montpellier.

    Google Scholar 

  • Blatt, W. F., A. Dravid, A. S. Michaels and L. Nelson. 1970. Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control, techniques. In Membrane Science and Technology, ed. J. E. Flinn. Plenum Press, New York.

    Google Scholar 

  • Brandon, C. A., J. L. Gaddis and G. Spencer. 1981. Recent applications of dynamic membranes. ACS Symp. Ser. 154: 435–53.

    Article  CAS  Google Scholar 

  • Carman, P. C. 1937. Fluid flow through granular beds. Trans. Inst. Chem. Engr. 15: 150–166.

    CAS  Google Scholar 

  • Charpin, J., P. Bergez, F. Valin, H. Barnier, A. Maurel and J. M. Martinet. 1984. Inorganic membranes: preparation, characterization and specific applications. High Tech Ceramics, Material Science Monographs, 38 (c): 2211–35.

    Google Scholar 

  • Fane, A. G. and P. H. Hodgson. 1990. Characterization of and flow through an isoporous inorganic membrane. Proc. 1st Int. Conf. Inorganic Membranes, 3–6 July, 501–505, Montpellier.

    Google Scholar 

  • Ferry, J. D. 1936. Ultrafiltration membranes and ultrafiltration. Chem. Rev. 18: 373–455.

    Article  CAS  Google Scholar 

  • Gillot, J. and D. Garcera. 1984. Niew ceramic filtering media. In Filtra 84, Sixth Congress of Filtration and Separative Techniques, 2–4 October 1984, 161–72. Société Française de Filtration, Paris.

    Google Scholar 

  • Gillot, J., M. Soria and D. Garcera. 1990. Recent developments in the Membralox® ceramic membranes. Proc. 1st Intl. Conf. Inorganic Membranes, 3–6 July, 379–81, Montpellier.

    Google Scholar 

  • Groves, G. R., C. A. Buckley, J. M. Cox, A. Kirk C. D. Macmillan and M. J. Simpson. 1983. Dynamic membrane ultrafiltration and hyperfiltration for the treatment of industrial effluents for water reuse. Desalination 47: 305–12.

    Article  CAS  Google Scholar 

  • Guizard, C., A. Larbot and L. Cot. 1990. A new generation of membranes based on organic-inorganic polymers. Proc. 1st Intl. Conf. Inorganic Membranes, 3–6 July, 55–64, Montpellier.

    Google Scholar 

  • Henry, J. D. Jr. 1972. Crossflow filtration. In Recent Developments in Separation Science, ed. N. N. Li, Vol. 2, pp. 205–25. Chemical Rubber Co., Ohio.

    Google Scholar 

  • Hsieh, H. P. 1988. Inorganic membranes.A.I.Ch.E. Symp. Ser. 84 (261): 1–18.

    CAS  Google Scholar 

  • Hsieh, H. P., R. R. Bhave and H. L. Fleming. 1988. Microporous alumina membranes. J. Membrane Sci. 39: 221–41.

    Article  CAS  Google Scholar 

  • Itaya, K., S. Sugawara, K. Arai and S. Saito. 1984. Properties of porous anodic aluminum oxide films as membranes. J. Chem. Eng. Japan 17(5): 514–20.

    Article  CAS  Google Scholar 

  • Johnson, J. S. Jr., R. E. Minturn and P. H. Wadia. 1972. Hyperfiltration. XXI. Dynamically formed hydrous Zr(IV) oxide-polyacrylate membranes. J. Electroanal. Chem. 37: 267–281.

    Article  CAS  Google Scholar 

  • Kimura, S. and S. Sourirajan. 1967. Analysis of data in reverse osmosis with porous cellulose acetate membranes used. A.I.Ch.E. J 13: 497–503.

    Article  CAS  Google Scholar 

  • Kimura, S. and S. Nakao. 1984. Rokagijutsu. In Filtration Technology, ed. The Society of Chem. Engrs. p. 130. Maki Shoten, Japan.

    Google Scholar 

  • Kimura, S. and T. Nomura. 1981. Purification of high temperature water by the reverse osmosis process. Desalination 38: 373–82.

    Article  CAS  Google Scholar 

  • Kimura, S., T. Ohtani and A. Watanabe. 1985. Nature of dynamically formed ultrafiltration membranes. ACS Symp. Ser. 281: 35–46.

    Article  CAS  Google Scholar 

  • Kishihara, S., S. Fujii and M. Komoto. 1986. Clarification of molasses through self-rejecting membrane formed dynamically on porous ceramic tube. Chemical Engineering Papers. Kagaku Kogaku Ronbunshu 2: 205–11.

    Google Scholar 

  • Kraus, K. A., A. J. Shor and J. S. Johnson 1967. Hyperfiltration Studies. 10. Hyperfiltration with dynamically formed membranes. Desalination 2: 243–266.

    Article  CAS  Google Scholar 

  • Langer, P. and R. Schnabel 1988. Porous glass membranes for downstream processing. Chem. Biochem. Eng. Q 2(4): 242–44.

    CAS  Google Scholar 

  • Langer, P. and R. Schnabel 1990. Porous glass UF membranes in biotechnology. Proc. 1st Intl. Conf. Inorganic Membranes, 3–6 July, 249–55. Montpellier.

    Google Scholar 

  • Larbot, A., J. A. Alary, C. Guizard, L. Cot and J. Gillot. 1987. New inorganic ultrafiltration membranes: preparation and characterization. Int. J. High Technol. Ceram. 3: 143–51.

    Article  CAS  Google Scholar 

  • Larbot, A., J. Fabre, C. Guizard and L. Cot. 1989. New inorganic ultrafiltration membranes. J. Am. Ceram. Soc. 12(2): 251–61.

    Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985a. The preparation and characterization of alumina membranes with ultrafine pores. Part 3. The permeability for pure Hquids. J. Membrane Sci. 24: 245–60.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985b. The preparation and characterization of alumina membranes with ultrafine pores. Part 4. Ultrafiltration and hyperfiltration experiments. J. Membrane Sci. 24: 261–70.

    Article  CAS  Google Scholar 

  • Leveque, M. A. 1928. On the laws of heat transmission by convection (in French). Ann. Mines 13: 201–299.

    Google Scholar 

  • Littman, F. E. and G. A. Guter. 1971. U. S. Ofiice Sahne Water Res. Develop. Progr. Rep. No. 720.

    Google Scholar 

  • Madsen, R. F. 1977. Hyperfiltration and Ultrafiltration in Plate and Frame Systems. Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Marcinkowsky, A. E., K. A. Kraus, H. O. Phillips, J. S. Johnson Jr. and A. J. Shor. 1966. Hyperfiltration studies. IV. Salt rejection by dynamically formed membranes. J. Amer. Chem. Soc. 88: 5744–48.

    Article  CAS  Google Scholar 

  • Matsumoto, Y., S. Nakao and S. Kimura. 1988. Crossflow filtration of solutions of polymers using ceramic microfiltration. Int. Chem. Eng. 28(4): 677–83.

    Google Scholar 

  • McCaffrey, R. R., R. E. McAtee, A. E. Grey, C. A. Allen, D. G. Cummings, A. D. Applehans, R. B. Wright and J. G. Jolley. 1987. Inorganic membrane technology. Sep. Sci. Technol. 22(2–3): 873–87.

    Article  CAS  Google Scholar 

  • Miller, J. M. and W. J. Koros. 1990. The formation of a chemically modified y-alumina microporous membrane. Sep. Sci. Technol. 25(13–15): 1257–80.

    Article  CAS  Google Scholar 

  • Minneci, P. A. and D. J. Paulson. 1988. Molecularly bonded metal microfiltration membrane. J. Membrane Sci. 39: 273–83.

    Article  CAS  Google Scholar 

  • Nakao, S. and S. Kimura. 1981. Analysis of solute rejection in ultrafiltration. J. Chem. Eng. Japan 14: 32–37.

    Article  CAS  Google Scholar 

  • Nakao, S. and S. Kimura. 1982. Models of membrane transport phenomena and their apphcations for ultrafiltration data. J. Chem. Eng. Japan 15: 200–05.

    Article  CAS  Google Scholar 

  • Nakao, S., T. Nomura and S. Kimura. 1986. Formation and characteristics of inorganic dynamic membranes for ultrafiltration. J. Chem. Eng. Japan 19(3): 221–26.

    Article  CAS  Google Scholar 

  • Nomura, T. and S. Kimura. 1980. Properties of dynamically formed membranes. Desalination 32: 57–63.

    Article  Google Scholar 

  • Parhn, R. and H. Eyring. 1954. Transport of Membranes. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Porter, M. C. 1972. Concentration polarization in membrane ultrafiltration. Ind. Eng. Chem. Prod. Res. Develop. 11: 234–248.

    Article  CAS  Google Scholar 

  • Shimizu, Y., T. Yazawa, H. Yanigisawa and K. Eguchi. 1987. Surface modification of alumina membranes for membrane bioreactor J. Ceram. Soc. Inter. Ed. 95: 1012–18.

    Google Scholar 

  • Stepner, T. A., C. S. Vassilieff and E. F. Leonard. 1985. Cell plasma interactions during membrane plasmapheresis. Clin. Hemorheology 5: 15–26.

    Google Scholar 

  • Sugawara, S., I. Sakurai, M. Konno and S. Saito. 1986. On the permeation mechanism of ultrafiltration with an anodic aluminum oxide membrane. J. Chem. Eng. Japan 19(5): 477–80.

    Article  CAS  Google Scholar 

  • Vassilieff, C. S., E. F. Leonard and T. A. Stepner. 1985. The mechanisms of cell rejection in membrane plasmapheresis. Clin. Hemorheology 5: 7–14.

    Google Scholar 

  • Vetier, C., M. Bennasar and B. Tarodo de la Feunte. 1988. Study of the fouling of a mineral microfiltration membrane using scanning electron microscopy and physiochemical analyses in the processing of milk. J. Dairy Research 55: 381–400.

    Article  CAS  Google Scholar 

  • Veyre, R. and D. Gerster. 1984. Industrial presence of Carbosep ultrafiltration mineral membranes. Paper read at the 188th American Chemical Society Meeting, 26–31 August, Philadelphia.

    Google Scholar 

  • Zeman, L. J. 1983. Adsorption effects in rejection of macromolecules by ultrafiltration membranes. J. Membrane Sci. 15: 213–230.

    Article  CAS  Google Scholar 

  • Zydney, A. L. and C. K. Colton. 1986. A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions. Chem. Eng. Commun. 47: 1–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Bhave, R.R. (1991). Permeation and Separation Characteristics of Inorganic Membranes in Liquid Phase Applications. In: Inorganic Membranes Synthesis, Characteristics and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6547-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6547-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6549-5

  • Online ISBN: 978-94-011-6547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics