Skip to main content

General Characteristics of Inorganic Membranes

  • Chapter

Abstract

The separation efficiency (e.g. permselectivity and permeabihty) of inorganic membranes depends, to a large extent, on the microstructural features of the membrane/support composites such as pore size and its distribution, pore shape, porosity and tortuosity. The microstructures (as a result of the various preparation methods and the processing conditions discussed in Chapter 2) and the membrane/support geometry will be described in some detail, particularly for commercial inorganic membranes. Other material-related membrane properties will be taken into consideration for specific separation apphcations. For example, the issues of chemical resistance and surface interaction of the membrane material and the physical nature of the module packing materials in relation to the membranes will be addressed.

With R. R. Bhave.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A. W. 1982. Physical Chemistry of Surfaces. 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Alcoa. 1987. Membralox® ceramic multichannel membrane modules. Product brochure.

    Google Scholar 

  • Baker, R. A., G. D. Forsythe, K. K. Likhyani, R. E. Roberts and D. C. Robertson. 1978. Separation device of rigid porous inorganic hollow filament and use thereof. U. S. Patent 4,105, 548.

    Google Scholar 

  • Ballou, E. v., M. L Leban and T. Wydeven. 1973. Solute rejection by porous glass membranes, in. Reduced sihca dissolution and prolonged hyperfiltration service with feed additive. J. Appl. Chem. Biotechnol. 23: 119–30.

    Article  CAS  Google Scholar 

  • Bansal, L K. 1976. Concentration of oily and latex waste waters using ultrafiltration inorganic membranes.Ind. Water Engr. 13 (5): 6–11.

    CAS  Google Scholar 

  • Beaver, R. P. 1986. Porous hollow sihca-rich fibers and method of producing same. European Patent Appl. 186, 129.

    Google Scholar 

  • Busscher, H. J., H. M. Uyen, G. A. M. Kip, and J. Arends. 1987. Adsorption of aminefluorides onto glass and the determination of surface free energy, zeta potential and adsorbed layer thickness. Colloids and Surfaces 22: 161–69.

    Article  CAS  Google Scholar 

  • Fain, D. E. 1990. A dynamic flow-weigh ted pore size distribution. Proc. 1st Intl. Conf. Inorganic Membranes, 1–5 July 1989, 199–205, Montpellier.

    Google Scholar 

  • Gaston County Filtration Systems. 1980. Gaston County ultrafiltration systems. Product brochure.

    Google Scholar 

  • Gerster, D, and R. Veyre. 1985. Mineral ultrafiltration membranes in industry. In Reverse Osmosis and Ultrafiltration, eds. S. Sourirajan and T. Matsuura, pp. 225–30. Washington, D.C.: Am. Chem. Soc.

    Chapter  Google Scholar 

  • Gillot, J. and D. Garcera. 1984. New ceramic filter media for cross-flow microfiltration and ultrafiltration. Paper presented at Filtra 84 Conference, 2–4 October 1984, Paris.

    Google Scholar 

  • Gillot, J., R. Soria, and D. Garcera. 1990. Recent developments in the Membralox® ceramic membranes. Proc. 1st. Intl. Conf. Inorganic Membranes 3–6 July pp. 379–81, Montpellier.

    Google Scholar 

  • Glaves, C. L., P. J. Davis, K. A. Moore, D. M. Smith and H. P. Hsieh. 1989. Pore structure characterization of composite membranes. J. Colloid and Interface Sci. 133(2): 377–89.

    Article  CAS  Google Scholar 

  • Goldsmith, R. L. 1988. Cross-flow filtration device with filtrate flow conduits and method of forming same. U. S. Patent 4,781,831.

    Google Scholar 

  • Goldsmith, R. L. 1990. Low-cost ceramic membrane modules. Paper read at 1990 Eighth Annual Membrane Technology Planning Conference, October 16, Newton, MA.

    Google Scholar 

  • Hsieh, H. P. 1988. Inorganic membranes. In AIChE Symp. Ser. New Membrane Materials and Processes of Separation, eds. K. K. Sirkar and D. R. Lloyd, pp. 1–18. New York: Am. Institute of Chem. Engr.

    Google Scholar 

  • Hsieh, H. P., R. R. Bhave and H. L. Fleming. 1988. Microporous alumina membranes. J. Membrane Sci. 39: 221–41.

    Article  CAS  Google Scholar 

  • Kameyama, T., K. Fukuda, M. Fujishige, H. Yokokawa and M. Dokiya and Y. Kotera 1981. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes: Adv. Hydrogen Energy Prog. 2: 569–79.

    CAS  Google Scholar 

  • Keizer, K., R. J. R. Uhlhorn, R. J. van Vuren and A. J. Burggraaf. 1988. Gas separation mechanisms in microporous modified gamma-Al203 membranes. J. Membrane Sci. 39: 285–300.

    Article  CAS  Google Scholar 

  • Klug, H. P., and L. E. Alexander. 1974. X-ray Diffraction Procedures for Poly crystalline and Amorphous Materials. 2nd ed. John Wiley & Sons, New York.

    Google Scholar 

  • Leenaars, A. F. M., K. Keizer and A. J. Burggraaf. 1984. The preparation and characterization of alumina membranes with ultrafine pores. Part 1. Microstructural investigations on nonsupported meriibranes. J. Mat. Sci. 19: 1077–88.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985a. The preparation and characterization of alumina membranes with ultrafine pores: 2. The formation of supported membranes. J. Coll Interface Sci. 105(1): 27–40.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M. and A. J. Burggraaf. 1985b. The preparation and characterization of alumina membranes with ultrafine pores. Part 4. Ultrafiltration and hyperfiltration experiments. J. Membrane Sci. 24: 261–70.

    Article  CAS  Google Scholar 

  • Messing, R. A. 1979. Hydrophobic inorganic membrane for gas transport. U.K. Patent 2, 014, 868A.

    Google Scholar 

  • Nourbakhsi, N., A. Champagnie, T. T. Tsotsis and I. A. Webster. 1989. Transport and reaction studies using ceramic membranes. In A.LCh.E. Symp. Ser.Membrane Reactor Technology, eds. R. Govind and N. Itoh, pp. 75–84. New York: Am. Institute of Chem. Engr.

    Google Scholar 

  • Nystrom, M., M. Lindstrom and E. Matthiasson. 1989. Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids & Surfaces 36: 297–312.

    Article  CAS  Google Scholar 

  • Ryshkewitch, E. and D. W. Richerson. 1985. Oxide Ceramics—Physical Chemistry and Technology. 2nd ed. General Ceramics, Inc., New Jersey.

    Google Scholar 

  • Samsonov, G. V. 1982. The Oxide Handbook. 2nd ed. IFI/Plenum Data Co., New York.

    Google Scholar 

  • Schnabel, R. and W. Vaulont. 1978. High-pressure techniques with porous glass membranes. Desalination 24 (1–3): 249–72.

    Article  CAS  Google Scholar 

  • Schwarz, H., V. Kudela, J. Lukas, J. Vacik and V. Grobe. 1986. Effect of the membrane potential on the performance of ultrafiltration membranes. Collection Czechoslovak Chem. Commun. 51: 539–44.

    Article  CAS  Google Scholar 

  • Shimizu, Y., T. Yazawa, H. Yanagisawa and K. Eguchi. 1987. Surface modification of alumina membranes for membrane bioreactor. Yogyo Kyokaishi 95: 1067–72.

    CAS  Google Scholar 

  • Shimizu, Y., K. Matsushita, I. Miura, T. Yazawa and K. Eguchi. 1988. Characterization of pore geometry of alumina membrane. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96(5): 556–60.

    Article  CAS  Google Scholar 

  • Shimizu, Y., K. Yokosawa, K. Matsushita, L Miura, T. Yazawa, H. Yanagisawa and K. Eguchi. 1989. Zeta potential of alumina membrane. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97(4): 498–501.

    Article  CAS  Google Scholar 

  • Venkataraman, K., W. T. Choate, E. R. Torre, R. D. Husung and H. R. Batchu. 1988. Characterization studies of ceramic membranes: A novel technique using a Coulter porometer. J. Membrane Sci. 39(3): 259–71.

    Article  CAS  Google Scholar 

  • Yazawa, T., H. Nakamichi, H. Tanaka and K. Eguchi. 1988. Permeation of liquid through a porous glass membrane with surface modification. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96(1): 18–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Hsieh, H.P. (1991). General Characteristics of Inorganic Membranes. In: Inorganic Membranes Synthesis, Characteristics and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6547-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6547-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6549-5

  • Online ISBN: 978-94-011-6547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics