Skip to main content

Abstract

The thorax is composed of three segments, the pro-, meso- and metathorax. In almost all insects each segment bears a pair of legs and in most adults both the meso- and metathorax carry a pair of wings. Where the legs are wanting, their absence is secondary. This apodous condition is extremely rare among the imagines but it is the rule among the larvae of the Diptera and certain families of Coleoptera. All Hymenopteran larvae, excepting the vast majority of the suborder Symphyta, are similarly devoid of legs. The absence of wings, on the other hand, may be a primitive character as in the Apterygota, but among the Pterygota it is always a secondary feature due to the loss of pre-existing organs. The thorax is exhibited in a simple form in the Thysanura, in certain more generalized Pterygota and in the larvae of many orders. In these instances the segments differ little in size and proportions, but with the acquisition of wings a correlated specialization of the thorax usually results. The meso- and metathorax become more or less intimately associated to form a pterothorax and the union is often so close that the limits of those regions can only be ascertained with difficulty. In orders where the wings are of about equal area these two thoracic segments are of equal size e.g. Isoptera, Embioptera, Odonata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature on the Thorax and its Appendages

  • ALEXANDER, R. D. and BROWN, W. L. (1963), Mating behaviour and the origin of insect wings, Occ. Paper. Mus. Zool. Univ. Mich., 628, 1–19.

    Google Scholar 

  • ALEXANDER, R. M. (1968), Animal Mechanics, Sidgwick & Jackson, London, 346 pp.

    Google Scholar 

  • ARNHART, L. (1923), Das Krallenglied der Honigbiene, Arch. Bienenkunde, 5, 37–86.

    Google Scholar 

  • ARNOLD, J. W. (1963), A note on the pterostigma in insects, Can. Ent., 95, 13–16.

    Google Scholar 

  • BARTH, R. (1937), Muskulatur und Bewegungsart der Raupen, zugleich ein Beitrag zur Spannbewegung und Schreckstellung der Spannerraupen, Zool. Jb. (Anat.), 62, 507–566.

    Google Scholar 

  • BARTH, R. (1954), O aparelho saltatorio do Halticineo Homophoeta sexnotata Ha. (Coleoptera), Mem. Inst. Osw. Cruz, 52, 365–376.

    Google Scholar 

  • BEHRENDS, J. (1935), Ueber die Entwicklung des Lakunen- Ader- und Tracheensystems während Puppenruhe im FlĂĽgel der Mehlmotte Ephestia kĂĽhniella Zeller, Z. Morph. Ă–kol. Tiere, 30, 573–596.

    Google Scholar 

  • BRAUN, A. F. (1919), Wing structure of Lepidoptera and the phylogenetic and taxonomic value of certain persistent Trichopterous characters, Ann. ent. Soc. Am., 12, 349–366.

    Google Scholar 

  • BRAUN, A. F. (1924), The frenulum and its retinaculum in the Lepidoptera, Ann. ent. Soc.Am., 17, 234–256.

    Google Scholar 

  • BUDDENBROCK, W. VON (1919), Die vermutliche Lösung der Halterenfrage, PflĂĽgers Arch. ges. Physiol., 175, 125–164.

    Google Scholar 

  • CHADWICK, I.E. (1953), In: ROEDER, K. D., Insect Physiology, Wiley, New York, pp. 577–655.

    Google Scholar 

  • CLARE, S. and TAUBER, O. E. (1940), Circulation of haemolymph in the wings of the cockroach Blattella germanica L. I. In normal wings, Iowa St. J. Sci., 14, 107–127.

    Google Scholar 

  • CLEVER, U. (1959), Ăśber experimentelle Modifikationen des Geäders und die Beziehungen zwischen den Versorgungssystemen im SchmetterlingsflĂĽgel. Untersuchungen an Galleria mellonella, Arch. Entw Mech. Org., 151, 242–279.

    Google Scholar 

  • COMSTOCK, J. H. (1918), The Wings of Insects, Comstock Publ. Co., New York, 430 pp.

    Google Scholar 

  • COMSTOCK, J. H. and NEEDHAM, J. G. (1898–99), The wings of insects, Am. Nat., 32, 43–48, 81–89, 231–257, 413–422, 560–565, 769–777, 903–911;

    Google Scholar 

  • COMSTOCK, J. H. and NEEDHAM, J. G. (1898–99), The wings of insects, Am. Nat., 33, 117–126, 573–582, 845–860.

    Google Scholar 

  • DASHMAN, T. (1953), Terminology of the pretarsus, Ann. ent. Soc. Am., 46, 56–62.

    Google Scholar 

  • DAVIS, R. A. and FRAENKEL, G. (1940), The oxygen consumption of flies during flight, J. exp. Biol., 17, 402–407.

    CAS  Google Scholar 

  • DORSETT, D. A. (1962), Preparation for flight by hawkmoths, J. exp. Biol., 39, 579–588.

    Google Scholar 

  • DUPORTE, E. M. (1965), The lateral and ventral sclerites of the insect thorax, Can. Jf.Zool., 43, 141–154.

    Google Scholar 

  • EDMUNDS, G. F. and TRAVER, J. R. (1954), The flight mechanics and evolution of the wings of Ephemeroptera, with notes on the archetype insect wing, J. Wash.Acad. Sci., 44, 390–400.

    Google Scholar 

  • EVANS, J. W. (1939), The morphology of the thorax of the Peloridiidae, Proc. R. ent.Soc. Lond., (A), 14, 143–150.

    Google Scholar 

  • FERRIS, G. F. (1940), The myth of the thoracic sternites of insects, Microentomology, 5, 87–90.

    Google Scholar 

  • FLOWER, J. W. (1964), On the origin of flight in insects, J. Insect Physiol., 10, 81–88.

    Google Scholar 

  • FORBES, W. T. M. (1933), The axillary venation of the insects, Proc. 5th int. Congr.Ent., 2, 277–284.

    Google Scholar 

  • FRAENKEL, G. (1932), Untersuchungen ĂĽber die Koordination von Reflexen und automatisch-nervösen Rhythmen bei Insekten. I–IV. Z. vergl. Physiol., 16, 371–462.

    Google Scholar 

  • FUDALEWICZ-NIEMCZYK, W. (1963), L’innervation et les organes sensoriels des Diptères et comparaison avec l’innervation des ailes d’insectes d’autres ordres, Acta Zool. cracov., 8, 351–462.

    Google Scholar 

  • GETTRUP, E. (1966), Sensory regulation of wing twisting in locusts, J. exp. Biol., 44, 1–16.

    PubMed  CAS  Google Scholar 

  • GILLETT, J. D. and WIGGLES WORTH, V. B. (1932), The climbing organ of an insect, Rhodniusprolixus (Hemiptera, Reduviidae), Proc. R. Soc. (B), 111, 364–376.

    Google Scholar 

  • GOUIN, F. J. (1959), Le thorax imaginai des insectes Ă  la lumière des travaux rĂ©cents, AnnĂ©e biol., 35, 269–303.

    Google Scholar 

  • GOVIND, C. K. (1972), Differential activity in the coxo-subalar muscle during directional flight in the milkweed bug Oncopeltus, Can. Jf. Zool., 50, 901–905.

    Google Scholar 

  • GUTHRIE, D. M. (1966), The function and fine structure of the cephalic airflow receptor in Schistocerca gregaria, J. Cell Sci., 1, 463–470.

    PubMed  CAS  Google Scholar 

  • HAMILTON, K. G. A. (1971), The insect wing. Part I. Origin and development of wings from notal lobes, J. Kansas ent. Soc., 44, 421–433.

    Google Scholar 

  • HAMILTON, K. G. A. (1972), The insect wing. Part II. Vein homology and the archetypal insect wing, J. Kansas ent. Soc., 45, 54–58.

    Google Scholar 

  • HINTON, H. E. (1963), The origin of flight in insects, Proc. R. ent. Soc. Lond. (C), 28, 24–25.

    Google Scholar 

  • HOCKING, B. (1953), The intrinsic range and speed of flight of insects, Trans. Rent. Soc. Lond., 104, 223–345.

    Google Scholar 

  • HOLDSWORTH, R. P. (1940), The histology of the wing-pads of the early instars of Pteronarcys proteus Newport (Plecoptera), Psyche, 47, 112–119; 714–715.

    Google Scholar 

  • HOLDSWORTH, R. P. (1942), The wing development of Pteronarcys proteus (Pteronarcidae: Plecoptera), Jf. Morph., 70, 431–462.

    Google Scholar 

  • HOLLICK, F. S. J. (1940), The flight of the dipterous fly Muscina stabulans FallĂ©n, Phil. Trans. R. Soc., Ser. B, 230, 357–390.

    Google Scholar 

  • HOLWAY, R. T. (1935), Preliminary note on the structure of the pretarsus and its possible phylogenetic significance, Psyche, 42, 1–24.

    Google Scholar 

  • HUGHES, G. M. (1965), Locomotion: terrestrial, In: ROCKSTEIN, M. (ed.), The Physiology of Insecta, Academic Press, New York, 2, 227–254.

    Google Scholar 

  • HUNDERTMARK, A. (1935), Die Entwicklung der FlĂĽgel des Mehlkäfers Tenebriomolitor, mit besonderer BerĂĽcksichtigung der Häutungsvorgänge, Z. Morph.Ă–kol. Tiere, 30, 506–543.

    Google Scholar 

  • JENSEN, M. (1956), Biology and physics of locust flight. III. The aerodynamics of locust flight, Phil. Trans. R. Soc., Ser. B, 239, 511–552.

    Google Scholar 

  • JENSEN, M. and WEIS-FOGH, T. (1962), Biology and physics of locust flight. V. Strength and elasticity of locust cuticle, Phil. Trans. R. Soc., Ser. B, 245, 137–169.

    Google Scholar 

  • JOHNSON, C. G. (1963), The origin of flight in insects, Proc R. ent. Soc. Lond. (C), 28, 26–27.

    Google Scholar 

  • JOHNSON, C. G. (1969), Migration and Dispersal of Insects by Flight, Chapman & Hall, London, 763 pp.

    Google Scholar 

  • KAMMER, A. E. (1968), Motor patterns during flight and warm-up in Lepidoptera, J. exp. Biol., 48, 89–109.

    Google Scholar 

  • KĂ–HLER, W. (1932), Die Entwicklung der FlĂĽgel bei der Mehlmotte Ephestia kĂĽhniella Zeller mit besonderer BerĂĽcksichtigung des Zeichnungsmusters, Z. Morph. Ă–kol. Tiere, 24, 582–681.

    Google Scholar 

  • KROGH, A. ANDZEUTHEN, E. (1941), The mechanism of flight preparation in some insects, J. exp. Biol., 18, 1–10.

    Google Scholar 

  • KUNTZE, H. (1935), Die FlĂĽgelentwicklung bei Philosamia cynthia Drury, mit besonderer BerĂĽcksichtigung des Geäders, der Lakunen und der Tracheensysteme, Z. Morph. Ă–kol. Tiere, 30, 544–572.

    Google Scholar 

  • LAGRECA, M. (1947), Morphologia funzionale dell’articolazione alare degli Ortotteri, Archo zool. ital., 32, 271–327.

    Google Scholar 

  • LAGRECA, M. (1954), Riduzione e scomparsa delle ali negli insetti Pterigoti, Archo zool. ital., 39, 361–440.

    Google Scholar 

  • LAMEERE, A. (1922), Sur la nervation alaire des insectes, Bull. Ac ad. roy. Bruxelles, 8, 138–149.

    Google Scholar 

  • LARSÉN, O. (1945), Das Meron der Insekten, Förh. K. fysiogr. Sällsk., 15, 96–104.

    Google Scholar 

  • LARSÉN, O. (1950), Die Veränderungen im Bau der Heteropteren bei der Reduktion des Flugapparates, Opusc. Ent., 15, 17–51.

    Google Scholar 

  • LARSÉN, O. (1966), On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera, Opusc. Ent., Suppl., 30, 1–242.

    Google Scholar 

  • LESTON, D. (1962), Tracheal capture in ontogenetic and phylogenetic phases of insect wing development, Proc. R. ent. Soc. Lond. (A), 37, 135–144.

    Google Scholar 

  • LARSÉN, O. (1963), The origin of flight in insects, Proc. R. ent. Soc. Lond. (C), 28, 23–32.

    Google Scholar 

  • MANTON, S. M. (1972), The evolution of arthropodan locomotory mechanisms. Part 10: Locomotory habits, morphology and evolution of the hexapod classes, Zool. J. Linn. Soc., 51, 203–400.

    Google Scholar 

  • MATSUDA, R. (1970), Morphology and evolution of the insect thorax, Mem. ent. Soc. Canada, 76, 431 pp.

    Google Scholar 

  • MITTELSTAEDT, H. (1950), Physiologie des Gleichgewichtssinnes bei fliegenden Libellen, Z. vergl. Physiol., 2, 422–463.

    Google Scholar 

  • NACHTIGALL, W. (1962), Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus, Z. vergl. Physiol., 45, 193–226.

    Google Scholar 

  • NACHTIGALL, W. (1905), Locomotion: swimming (hydrodynamics) of aquatic insects, In: ROCKSTEIN, M. (ed.), The Physiology of Insecta, 2, 255–281.

    Google Scholar 

  • NACHTIGALL, W. (1966), Die Kinematik der SchlagflĂĽgelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs, Z. vergl. Physiol., 52, 155–211.

    Google Scholar 

  • NACHTIGALL, W. (1974), Insects in Flight, Allen & Unwin, London, 153 pp.

    Google Scholar 

  • NEEDHAM, J. G. (1903), A genealogic study of dragonfly wing venation, Publ. U.S. nat. Mus., 26, 703–764.

    Google Scholar 

  • NACHTIGALL, W. (1935), Some basic principles of insect wing venation, Jl N.Y. ent. Soc., 43, 113–129.

    Google Scholar 

  • NEVILLE, A. C. (1960), Aspects of flight mechanics in anisopterous dragonflies, J. exp. Biol., 37, 631–656.

    Google Scholar 

  • NORBERG, R. A. (1972), The pterostigma of insect wings as an inertial regulator of wing pitch, J. Comp. Physiol., 83, 9–22.

    Google Scholar 

  • PHILPOTT, A. (1924), The wing-coupling apparatus in Sabatinca and other primitive genera of Lepidoptera, Rep. Aust. Ass. Advmt Sci., 16, 414–419.

    Google Scholar 

  • PHILPOTT, A. (1925), On the wing-coupling apparatus of the Hepialidae, Trans. ent. Soc.Lond., 1925, 331–340.

    Google Scholar 

  • PRINGLE, J. W. S. (1948), The gyroscopic mechanism of the halteres of Diptera, Phil. Trans. R. Soc., Ser. B., 233, 347–384.

    Google Scholar 

  • PRINGLE, J. W. S. (1957), Insect Flight, Cambridge Univ. Press, Cambridge, 133 pp.

    Google Scholar 

  • PRINGLE, J. W. S. (1965), Locomotion: Flight, In: ROCKSTEIN, M. (ed.), The Physiology of Insecta, 2, 283–329.

    Google Scholar 

  • PRINGLE, J. W. S. (1968), Comparative physiology of the flight motor, Adv. Insect Physiol., 5, 163–227.

    Google Scholar 

  • RAINEY, R. C. (ed.) (1976), Insect Flight, Syntp. R. ent. Soc. Lond., 7, 296 pp.

    Google Scholar 

  • REID, J. A. (1941), The thorax of the wingless and short-winged Hymenoptera, Trans. R. ent. Soc., Lond., 91, 367–446.

    Google Scholar 

  • SACKTOR, B. (1970), Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle, Adv. Insect Physiol., 7, 267–347.

    CAS  Google Scholar 

  • SANDER, K. (1956), Bau und Funktion des Sprungapparates von Pyrilla perpusilla Walker (Homoptera-Fulgoroidea), Zool. Jb. (Anat.), 75, 383–388.

    Google Scholar 

  • SARKARIA, D. S. and PATTON, R. L. (1949), Histological and morphological factors in the penetration of DDT through the pulvilli of several insect species, Trans. Am. ent. Soc., 75, 71–82.

    Google Scholar 

  • SHENKE, G. (1965), Schwimmhaarsystem und Rudern von Notonecta glauca, Z.Morph. Ă–kol. Tiere, 55, 631–640.

    Google Scholar 

  • SCHNEIDER, G. (1953), Die Halteren der Schmeissfliege (Calliphord) als Sinnesorgane und als mechanische Flugstabilisatoren, Z. ver gl. Physiol., 35, 416–458.

    Google Scholar 

  • SÉGUY, E. (1959), Introduction Ă  l’étude morphologique de l’aile des insectes, MĂ©m.Mus. Hist. nat. Paris, N.S., 21A, 1–248.

    Google Scholar 

  • SHARPLIN, J. (1963, 1964), Wing base structure in Lepidoptera I—III, Can. Ent., 95, 1024–1050, 1121–1145;

    Google Scholar 

  • SHARPLIN, J. (1963, 1964), Wing base structure in Lepidoptera I—III, Can. Ent., 96, 943–949.

    Google Scholar 

  • SMART, J. (1956), A note on insect wing veins and their tracheae, Q. Jl microsc. Sci., 97, 535–539.

    Google Scholar 

  • SMITH, D. S. (1964), The structure and development of flightless Coleoptera: a light- and electron microscope study of the wings, thoracic exoskeleton and rudimentary flight muscles, J. Morph., 114, 107–184.

    Google Scholar 

  • SNODGRASS, R. E. (1927), Morphology and mechanism of the insect thorax, Smithson. misc. Colins, 80, 1–108.

    Google Scholar 

  • SNODGRASS, R. E. (1929), The thoracic mechanism of a grasshopper and its antecedents, Smithson. misc. Colins, 82, 1–111.

    Google Scholar 

  • SNODGRASS, R. E. (1935), Principles of Insect Morphology, McGraw-Hill, London and New York, 667 pp.

    Google Scholar 

  • STELLWAAG, F. (1916), Wie steuern die Insekten im Flug? Naturwissenschaften, 4, 256–259, 270–272.

    Google Scholar 

  • Ĺ ULC, K. (1927), Das Tracheensystem von Lepisma (Thysanura) und Phylogenie der Pterygogenea, Acta. Soc. sci. nat. Moravia, 4, 227–344.

    Google Scholar 

  • TANNERT, W. (1958), Die FlĂĽgelgelenkung bei Odonaten, Dtsch. ent. Z., (N.F.) 5, 394–455.

    Google Scholar 

  • TIEGS, O. W. (1955), The flight muscles of insects — their anatomy and histology, with some observations on the structure of striated muscles in general, Phil.Trans. R. Soc., Ser. B, 238, 221–348.

    Google Scholar 

  • TILLYARD, R. J. (1918a), The Panorpoid complex. i. The wing-coupling apparatus with special reference to the Lepidoptera, Proc. Linn. Soc. N.S. Wales, 43, 286–319.

    Google Scholar 

  • TILLYARD, R. J. (1918b), The Panorpoid complex. ii. The wing trichiation and its relation to the general scheme of venation, Proc. Linn. Soc. N.S. Wales, 43, 626–657.

    Google Scholar 

  • VIGNON, P. (1929), Introduction Ă  nouvelles recherches de morphologie comparĂ©e sur l’aile des insectes, Arch. Mus. Hist. nat. Paris, 4, 89–125.

    Google Scholar 

  • VOGEL, S. (1966–67), Flight in Drosophila. I—III, J. exp. Biol., 44, 567–578;

    Google Scholar 

  • VOGEL, S. (1966–67), Flight in Drosophila. I—III, J. exp. Biol., 46, 383–392; 431–443.

    Google Scholar 

  • WADDINGTON, C. H. (1941), The genetic control of wing development in Drosophila, J. Genet., 41, 73–139.

    Google Scholar 

  • WEBER, H. (1930), Biologie der Hemipteren. Eine Naturgeschichte der Schnabelkerfe, Springer, Berlin, 543 pp.

    Google Scholar 

  • WEIS-FOGH, T. (1950), An aerodynamic sense organ in locusts, Proc. 8th int. Congr.Ent., Stockholm, 1948, 584–588.

    Google Scholar 

  • WEIS-FOGH, T. (1956a), Biology and physics of locust flight. II. Flight performance of the desert locust (Schistocerca gregaria), Phil. Trans. R. Soc., Ser. B, 239, 459–510.

    Google Scholar 

  • WEIS-FOGH, T. (1956b), Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight, Phil. Trans. R. Soc., Ser. B, 239, 553–584.

    Google Scholar 

  • WEIS-FOGH, T. (1972), Energetics of hovering flight in hummingbirds and in Drosophila, J. exp. Biol., 56, 79–104.

    Google Scholar 

  • WEIS-FOGH, T. and JENSEN, M. (1956), Biology and physics of locust flight. I. Basic principles in insect flight. A critical review, Phil. Trans. R. Soc., Ser. B, 239, 415–458.

    Google Scholar 

  • WHITTEN, J. M. (1962), Homology and development of insect wing tracheae, Ann.ent. Soc. Am., 55, 288–295.

    Google Scholar 

  • WIGGLESWORTH, V. B. (1954), Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera), Q. Jl microsc. Sci., 95, 115–137.

    Google Scholar 

  • WIGGLESWORTH, V. B. (1963), The origin of flight in insects, Proc. R. ent. Soc. Lond. (C), 28, 23–24.

    Google Scholar 

  • WIGGLESWORTH, V. B. (1973), Evolution of insect wings and flight, Nature, 246, 127–129.

    Google Scholar 

  • WILSON, D. M. (1966), Insect walking, A. Rev. Ent., 11, 103–122.

    CAS  Google Scholar 

  • WILSON, D. M. (1968), The nervous control of insect flight and related behaviour, Adv. InsectPhysiol., 5, 289–338.

    Google Scholar 

  • WOODRING, J. P. (1962), Oribatid (Acari) pteromorphs, Pterogasterine phylogeny, and evolution of wings, Ann. ent. Soc. Am., 55, 394–403.

    Google Scholar 

  • YEAGER, J. F. and HENDRICKSON, G. O. (1934), Circulation of the blood in wings and wing-pads of the cockroach, Periplaneta americana Linn, Ann. ent. Soc.Am., 27, 257–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 O. W. Richards and R. G. Davies

About this chapter

Cite this chapter

Richards, O.W., Davies, R.G. (1977). The Thorax. In: IMMS’ General Textbook of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6514-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6514-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-15210-8

  • Online ISBN: 978-94-011-6514-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics