Skip to main content

Neutral and alkaline sizing

  • Chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Internal sizing is achieved by retarding the rate of penetration of a fluid, usually water, through capillaries formed both within and between fibres. The rate of capillary rise of fluids into paper has been effectively described by the Washburn equation [1] and modifications of it [2]. These approaches assume that the penetration of a fluid into paper is analogous to that of a fluid into a single capillary. Retardation is thus brought about by the creation of a low energy hydrophobic surface at the fibre-water interface which increases the contact angle formed between a drop of liquid and the surface and thus decreases the wettability. Contact angles have been shown to be sensitive to molecular packing, surface morphology and chemical constitution [3–5], and it is the latter which is influenced during the internal sizing of paper. An excellent review is available [6] and this subject is also discussed more fully in Chapter 7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsson, I. and Pihl., Svensk Pap., 55 (1952), 233.

    CAS  Google Scholar 

  2. Hoyland, R.W., Proc. Fund. Res. Symp. Oxford (1977), 557.

    Google Scholar 

  3. Fox, H.W., Zisman, W.A., J. Colloid Sci., 7(4) (1952), 428.

    Article  CAS  Google Scholar 

  4. Hoernschmeyer, D., J. Phys. Chem., 70 (8) (1966), 2628.

    Article  Google Scholar 

  5. Bernett, M.K., Zisman, W.A., J. Phys. Chem., 63 (8) (1959), 1241.

    Article  Google Scholar 

  6. Tappi Monograph, Sizing of Paper, ed. W.F. Reynolds (1989), 133–154.

    Google Scholar 

  7. Strazdins, E., Tappi, 64 (1) (1981), 31.

    CAS  Google Scholar 

  8. German Patents: 2,423,651 (1974); 2,611,827 (1976); 2,611,746 (1976).

    Google Scholar 

  9. US Patent 4,123,319 (1978).

    Google Scholar 

  10. British Patent 954,526 (1964).

    Google Scholar 

  11. Canadian Patent 770,079 (1967).

    Google Scholar 

  12. US Patents 3,102,064 (1963); 3,409,500 (1968); 3,455,330 (1969); 4,207,142 (1980).

    Google Scholar 

  13. Serota, S. et al., Tappi, 63 (9) (1980), 92.

    CAS  Google Scholar 

  14. Downey, W.F. to Hercules; US Patent No. 2,627,477 (1953).

    Google Scholar 

  15. US Patents 2,785,067 (1957); 2,762,270 (1956); 2,856,310 (1958); 2,865,743 (1958); 2,961,366 (1960); 2,986,488 (1961) 3,483,077 (1969).

    Google Scholar 

  16. US Patents 3,050,437 (1962); 3,589,978 (1962); 3,492,081 (1970); 3,310,460 (1967); 3,627,631 (1971); 3,499,824 (1970); 3,575,796 (1971).

    Google Scholar 

  17. US Patent 3,821,069 (1974).

    Google Scholar 

  18. Dumas, D.H., Tappi, 64 (1) (1981), 43.

    CAS  Google Scholar 

  19. Boese, A.B., Ind. Eng. Chem., 32 (1940), 16–22.

    Article  CAS  Google Scholar 

  20. Staudinger, H. and Eicher, T., Makromol. Chem., 8–10 (1952–53), 261–279.

    Google Scholar 

  21. Kirillova, G.N. and Padehenko, G.O., Zhurnal Prikladnoi Khimii, 37, (1964), 918.

    CAS  Google Scholar 

  22. Sauer, J.C., J. Amer. Chem. Soc., 69 (1947), 2444–2448.

    Article  CAS  Google Scholar 

  23. Davis, J.W., Robertson, W.H. and Weisgerber, C.A., Tappi, 39 (1956), 21–23.

    CAS  Google Scholar 

  24. Lindström, T., Trans. 9th Fundamental Research Symposium, Cambridge, England, Baker, C.F. and Punton, V.W., eds. Mech. Eng. Publ. Ltd., London (1989), 311–435.

    Google Scholar 

  25. Garner, D.N. Ph.D. thesis, University of Manchester, England (1984).

    Google Scholar 

  26. Roberts, J.C., Garner, D.N. and Akpabio, U.D., Proc. 8th. Fund. Res. Symp., Oxford (1985), vol. 2, Mech. Eng. Publ., London (1985), 815–837.

    Google Scholar 

  27. Tappi Monograph, Sizing of Paper, ed. W.F. Reynolds, Ch. 2, (1989), 33–50.

    Google Scholar 

  28. Roberts, J.C. and Garner, D.N., Cell. Chem. and Tech., 18, (1984), 275–282.

    CAS  Google Scholar 

  29. Roberts, J.C. and Garner, D.N., Tappi, 68 (4) (1985), 118–121.

    CAS  Google Scholar 

  30. Lindström, T., Soderberg, G. and Obrien, H., Nordic Pulp and Paper J., 1, 26–42 and ibid. 2, 31–45 (1986).

    Article  Google Scholar 

  31. Lindström, T., Proc. XXI Eucepa Conf, Torremolinos, Spain (1984).

    Google Scholar 

  32. Pisa, L. and Murkova, E., Papir Celluloza, 36 (2) (1981), v15–v18.

    Google Scholar 

  33. Rohringer P. et al., Tappi, 68 (1), (1985), 83–86.

    CAS  Google Scholar 

  34. Lindström, T., Discussion contribution to reference 26.

    Google Scholar 

  35. Nahm, S.H. J. Wood Chem. Tech., 6 (1) (1986), 89.

    Article  CAS  Google Scholar 

  36. Lindström, T. and Soderberg, G., Nordic Pulp and Paper Res. J., 2, (1986), 39–45.

    Article  Google Scholar 

  37. Roberts, J.C. and Yajun, Z., Proc. PIRA Symp. on Neutral Papermaking, Stratford, England (1990).

    Google Scholar 

  38. Wurzburg, O.B., US Patent No. 3,821,069 (1974).

    Google Scholar 

  39. Roberts, J.C. and Wan Daud, W.R., Proc. 10th Cellulose Conference, Syracuse, June 1988.

    Google Scholar 

  40. US Patent No. 3,641,184 (1972).

    Google Scholar 

  41. Benn, F.R., Dwyer, J. and Chappell, I., J. Chem. Soc. (Perkin II) (1977), 533–535.

    Google Scholar 

  42. Sublett, B.J. and Bowman, N.S., J. Org. Chem., 26 (1961), 2594–2595.

    Article  CAS  Google Scholar 

  43. Wasser, R.B., Proc. Tappi Papermakers Conf., Denver, (1985), 17–20.

    Google Scholar 

  44. Wan Rosli Wan Daud, Ph.D. thesis, University of Manchester (1988).

    Google Scholar 

  45. Eberson, L., Acta Chem. Scand., 18 (2) (1964), 534–542.

    Article  CAS  Google Scholar 

  46. Bunton, C.A. et al., J. Chem. Soc., (1963), 2918–2926.

    Google Scholar 

  47. McCarthy, W.R., Ph.D thesis, Institute of Paper Chemistry, Appleton, USA (1987).

    Google Scholar 

  48. McCarthy, W.R. and Stratton, R.A., Tappi, 70 (12) (1987), 117.

    CAS  Google Scholar 

  49. Roberts, J.C. and Wan Daud W.R. ‘Wood Processing and Utilisation’, Proc. Cellucon Japan Conf., eds. Kennedy J.F., Philips, G.O., and Williams P., Ellis Horwood, Chichester, England, (1989), 133–142.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Blackie & Son Ltd

About this chapter

Cite this chapter

Roberts, J.C. (1991). Neutral and alkaline sizing. In: Roberts, J.C. (eds) Paper Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6474-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6474-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6476-4

  • Online ISBN: 978-94-011-6474-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics