Skip to main content

Wet-strength chemistry

  • Chapter

Abstract

Paper is a layered mat consisting of a network of cellulose fibres bonded together. Each of the fibre-fibre contacts is held together by intermolecular forces (van der Waals; hydrogen bonding) which are very sensitive to water, the extent of bonding decreasing steadily as the water content of the paper increases [1], The water wets the fibres which swell; the bonds are broken leaving somewhere between 3% and 10% of the original dry strength (at 50% relative humidity). It is thought that some of this residual strength results from covalent fibre-fibre bonds [2,3]. Apart from the influence of the physical properties of the fibre network, the strength of the paper matrix is dependent on the bonded area, and this can be increased by forcing the surfaces together as in wet pressing, or by increasing fibre flexibility and swelling. Other solvents also affect strength, and their effects are essentially related to their ability to swell cellulose [4–6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britt, K.W., ‘Review of developments in wet-strength paper’. Tech. Assoc. Papers, 31 (1948), 594–596.

    CAS  Google Scholar 

  2. Salmen, N.L., ‘Mechanical properties of wood fibers and papers’, in Cellulose Chemistry and its Applications, eds Nevell, T.P. and Zeronian, S.H., Ellis Horwood, Chichester (1987), Ch. 20, 505–530.

    Google Scholar 

  3. Back, E.L., ‘Cellulose at high temperatures. Autocrosslinking, glass transition and melting caused by laser rays’. Papier, 27 (10A) (1973), 475–483.

    CAS  Google Scholar 

  4. Robertson, A.A., Pulp and Paper Report No 26, Pulp and Paper Research Institute of Canada, Montreal, Canada (1969).

    Google Scholar 

  5. Britt, K.W., Tappi J., 46 (12) (1963), 154A.

    Google Scholar 

  6. Thode, E.F. and Guide, R.G., ‘A thermodynamic interpretation of the swelling of cellulose in organic liquids: the relations among solubility parameter, swelling and internal surface’. Tappi J., 42 (1959), 35–39.

    CAS  Google Scholar 

  7. Britt, K.W., ‘Some observations on wet-strength paper’. Paper Ind. Paper World, 26 (1) (1944), 37–41, 46.

    CAS  Google Scholar 

  8. Maxwell, C.S. and Reynolds, W.F., ‘Permanence of wet-strength paper’, Tappi J., 33 (4) (1950), 179–182.

    CAS  Google Scholar 

  9. Stannett, V.T., ‘Mechanisms of wet-strength development in paper’, in Surfaces and Coatings Related to Paper and Wood, eds Marchessault, R.H. and Skaar, C., Syracuse University Press, Syracuse, New York (1967), Ch. 10, 269–299.

    Google Scholar 

  10. Westfelt, L., ‘Chemistry of paper wet strength. I. A survey of mechanisms of wet-strength development’. Cellulose Chem. Technol, 13 (1979), 813–825.

    CAS  Google Scholar 

  11. Britt, K.W., ‘Wet-strength’, in Pulp and Paper Chemistry and Chemical Technology, 3rd Edition, ed. J.P. Casey, John Wiley & Sons, New York (1980), vol. III, Ch. 18, 1609–1626.

    Google Scholar 

  12. Neal, C.W., ‘A review of the chemistry of wet-strength development’, in 1988 Tappi Wet and Dry Strength Short Course, Chicago, April 13-15 (1988), Tappi Press, Atlanta, 1–24.

    Google Scholar 

  13. Espy, H.H., ‘The effects of pulp refining on wet-strength resin’. Tappi J., 70 (7) (1987), 129–133.

    CAS  Google Scholar 

  14. Fredholm, B., Samuelsson, B. Westfelt, A. and Westfelt, L., Cellulose Chem. Technol., 17 (3) (1983), 279.

    CAS  Google Scholar 

  15. Schur, M.O., Improving the Wet-Strength of Papers. US Patent 2,116,544, (1938) Brown Company, 10.05.1938.

    Google Scholar 

  16. Schaeffer, A., ‘Chemical processes in the treatment of staple nylon with formaldehyde’, Zelwolle, Kunsteide, Seide, 48 (1943), 1–8.

    CAS  Google Scholar 

  17. Britt, K.W., ‘Review of developments in wet-strength paper’. Paper Mill News, 70 (39) (1947), 106,109.

    CAS  Google Scholar 

  18. Yost, R.S. and Auten, R.W., US Patent 2,407,599 (1956), 17.04.56.

    Google Scholar 

  19. Brent, E.A., Drennen, T.J. and Shelley, J.P., Urea-formaldehyde resins’, in Wet Strength in Paper and Paperboard, ed. Weidner, J.P. Tappi Monograph Series No. 29, Tappi Press, New York (1965), Ch. 1, pp. 9–19.

    Google Scholar 

  20. Woehnsiedler, H.P. and Thomas, W.M., Cationic Melamine-Formaldehyde Resin Solutions. US Patent 2,345,543 (1944), American Cyanamid Company, 28.03.1944.

    Google Scholar 

  21. Maxwell, C.S., Pacific Pulp Paper Ind., 17 (4) (1943), 6.

    Google Scholar 

  22. Woehnsiedler, H.P., Urea-formaldehyde and melamine-formaldehyde condensations’, Ind. Eng. Chem., 44 (11) (1952), 2679–2686.

    Article  Google Scholar 

  23. Maxwell, C.S., ‘Melamine formaldehyde’, in Wet-strength in Paper and Paperboard, Tappi Monograph Series No. 29, Tappi Press (1965), Ch. 2, 20–32.

    Google Scholar 

  24. Salley, D.J. and Blockman, A.F., Paper Trade J. 125 (1) (1947), 35.

    CAS  Google Scholar 

  25. Keim, G.I., US Patent 2,926,116, (1965), High Wet-strength Paper. US Patent 2,926,116, Hercules Powder Company, 23.02.1960.

    Google Scholar 

  26. Keim, G.I., US Patent 2,926,154, Cationic Thermosetting Polyamide-Epichlorohydrin Resins for Preparing Wet-strength Paper, Hercules Powder Company, 23.02.1960.

    Google Scholar 

  27. Moyer, W.W. and Stagg, R.A., ‘Polyamide-polyamine-epichlorohydrin resins, in Wet- strength in Paper and Paperboard, Tappi Monograph Series No. 29, Tappi Press (1965), Ch. 3, 33–37.

    Google Scholar 

  28. Chan, L.L., ‘Expoxidized polyamide resins’, in 1988 Tappi Wet and Dry Strength Short Course, Chicago, April 13–15 (1988), Tappi Press, Atlanta, 25–30.

    Google Scholar 

  29. Espy, H.H. and Rave, T.W., The mechanism of wet-strength development by alkaline-curing amino polymer-epichlorohydrin resins’. Tappi J., 71 (5) (1988), 133–137.

    CAS  Google Scholar 

  30. Bates, N.A., ‘Polyamide-epichlorohydrin wet-strength resin II. A study of the mechanism of wet-strength development in paper’. Tappi J., 52 (6) (1969), 1162–1168.

    CAS  Google Scholar 

  31. Pahl, B.L. and Espy, H.H., ‘Use of polyamide resins in board’, in 1988 Tappi Wet and Dry Strength Short Course, Chicago, April 13–15 (1988), Tappi Press, Atlanta, 31–37.

    Google Scholar 

  32. Gill, R.I.S., ‘CARTAFIX — An effective control of interfering substances’, in Specialty Chemicals for the Paper Industry, Proc. Pira Paper and Board Division Conference, ref: 31/003/CM/81, Leeds, 6th March (1990), Paper No. 03.

    Google Scholar 

  33. Ampulski, R.S. and Neal, C.W., The effect of inorganic ions on the adsorption and ion exchange of kymene 557H by bleached northern softwood kraft pulp.’ Nordic Pulp Paper Res. J., 2 (1989), 155–163.

    Article  Google Scholar 

  34. Coscia, A.T. and Williams, L.L., US Patent 3,556,932. Water Soluble, Glyoxalated, Vinylamide Wet-strength Resin and Paper Made Therewith, American Cyanamid Company (1968).

    Google Scholar 

  35. Farley, C.E., ‘Glyoxalated polyacrylamide wet-strength resin’, in Wet Strength in Paper and Paperboard, Tappi Monograph Series, Tappi Press, Atlanta, (1991), in press.

    Google Scholar 

  36. Farley, C.E., Glyoxalated polyacrylamide wet-strength resin, in 1988 Tappi Wet and Dry Strength Short Course, Chicago, April 13–15 (1988), Tappi Press, Atlanta, 39–42.

    Google Scholar 

  37. Coscia, A.T. and Williams, L.L., US Patent 3,556,933, American Cyanamid Company (1971).

    Google Scholar 

  38. Farley, C.E., in Proc. 1986 Tappi Papermaker’s Conference, Tappi Press, Atlanta (1986), 147.

    Google Scholar 

  39. Wasser, R.B., in Pulp and Paper Chemistry and Chemical Technology, 3rd edn, ed. J.P. Casey, John Wiley & Sons, New York (1980), vol. III.

    Google Scholar 

  40. Sarkanen, K.V., ‘Polyethylenimine resins’, in Wet Strength in Paper and Paperboard, Tappi Monograph Series No. 29, Tappi Press (1965), Ch. 4, 38–49.

    Google Scholar 

  41. Wilfmger, H., Papier, 2 (1948), 265.

    Google Scholar 

  42. Trout, P.E., The Mechanism of the Improvement of the Wet Strength of Paper by Polyethylenimine. Ph.D. Thesis, Lawrence College (1951).

    Google Scholar 

  43. Allan, G.G. and Reif, W.M., ‘Fibre surface modification Part 6. The Jack-in-the-box effect: a new mechanism for the retention of polyethylenimine and other polyelectrolytes by pulp fibres.’ Svensk Papperstidn., 74 (2) (1971), 25–31.

    CAS  Google Scholar 

  44. Mehltretter, C.L., ‘Some landmarks in the chemical technology of carbohydrate oxidation’. Die Stärke 15 (1963), 313.

    Article  CAS  Google Scholar 

  45. Mehltretter, C.L., ‘Recent progress in dialdehyde starch technology,’ Die Stärke, 18 (1966), 208.

    Article  CAS  Google Scholar 

  46. Hofreiter, B.T., Heath, H.D., Ernst, A.J., and Russell, C.R., Dialdehyde starch, an alkali labile wet-strength agent, Tappi J., 57 (8) (1974), 81.

    CAS  Google Scholar 

  47. Hamerstrand, G.E., Hofreiter, B.T., Kay, D.J., and Rist, C.E., Dialdehyde starch hydrazonescationic agents for wet-strength paper. Tappi J., 46 (7) (1963).

    Google Scholar 

  48. Hofreiter, B.T., ‘Dialdehyde starches’, in Wet-strength in Paper and Paperboard, Tappi Monograph Series No. 29, Tappi Press, (1965), Ch. 5, 50–73.

    Google Scholar 

  49. Weidner, J.P., (ed.), Wet-strength in Paper and Paperboard, Tappi Monograph Series No. 29, Tappi Press, New York (1965).

    Google Scholar 

  50. Pakinkis, F., Developments in wet-end-starch technology, in World Pulp and Paper Technology 1990, Int. Review for the Pulp and Paper Industry, ed. Roberts, F., Sterling Publications International Ltd, London (1989), 263, 266–269.

    Google Scholar 

  51. Allison, C.J., Testing Methods’, in Wet-strength in Paper and Paperboard, ed. Weidner, J.P., Tappi Monograph Series No. 29, Tappi Press, New York (1965), Ch. 10, 131–143.

    Google Scholar 

  52. Kamutzki, W., ‘Wet-strength resins of low formaldehyde content’, Papier 41 (10A) (1987), 36–44.

    Google Scholar 

  53. Troemel, G. ‘AOX-value reduced with new wet-strength agents’, in World Pulp and Paper Technology 1990, Int. Review for the Pulp and Paper Industry, ed. Roberts, F., Sterling Publications International Ltd., London (1989), 263, 266–269.

    Google Scholar 

  54. Pelzer, R., Kamutzki, W. and Moller, K., ‘Wet-strength agents today — tomorrow?’ Wochenbl. Papierfabr., 117 (11–12) (1989), 499–500, 502, 504.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Blackie & Son Ltd

About this chapter

Cite this chapter

Dunlop-Jones, N. (1991). Wet-strength chemistry. In: Roberts, J.C. (eds) Paper Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6474-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6474-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6476-4

  • Online ISBN: 978-94-011-6474-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics