Skip to main content

Changes in the CNS Biogenic Amines and Tyrosine Hydroxylase Activity After Spinal Cord Transection in the Rat

  • Chapter
Book cover Spinal Cord Injury

Abstract

In 134 male Wistar rats weighing 250–350g, the spinal cord was transected between the fifth and sixth thoracic vertebra. In the spinal cord above the lesion, concentrations of norepinephrine and serotonin increased three and twofold, respectively, compared with control levels. Below the lesion, however, the levels of these amines decreased significantly, and, after seven to twelve days, their concentrations were undetectable. In the brain stem, starting at seven days after transection, norepinephrine, serotonin, and histamine concentrations were sharply higher than those of controls. In the brain, during the first 24 hours, there were sharp fluctuations in serotonin, norepinephrine, and histamine concentrations; after which time, serotonin and histamine reached the control levels. Norepinephrine levels, however, dropped sharply at seven days and returned to normal levels thereafter. In the heart, the concentrations of serotonin dropped significantly to less than 40%, and those of norepinephrine and histamine dropped to less than 70% of the control. In the brain stem and adrenals, tyrosine hydroxylase activity reached a peak (two and fourfold increase, respectively) five days after spinal cord transection. The activity in the brain, however, reached a maximum (twofold above control) seven days after transection. Adrenal enzyme activity was still twice that of control, seven to thirty days after transection. In the spinal cord, changes in the enzyme activity were negligible at all times. Fluctuations in cyclic adenosine 3′, 5′-monophosphate levels were similar to those of tyrosine hydroxylase activity except that in the adrenals, there was a tenfold increase in its concentration five minutes following spinal cord transection.

The increase in tyrosine hydroxylase activity in the brain and brain stem may be partly due to curtailed end-product feedback inhibition and partly to reduced receptor activation. The sustained induction of the adrenal medullary tyrosine hydroxylase is probably a consequence of a continual stimulation of splanchnic nerve, resulting in de novo enzyme synthesis as indicated by the marked increase in c-AMP concentrations in the adrenals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alousi, A., and Weiner, N. The regulation of norepinephrine synthesis in sympathetic nerves. Effect of nerve stimulation, cocaine and calcium releasing agents. Nat. Acad. Sci. 56: 1491–1496 (1966).

    Article  CAS  Google Scholar 

  • Anden, N.E., Haggendal, J., Magnusson, T., and Rosengrin, E. The time course of disappearance of norepinephrine and 5-hydroxytryptamine in the spinal cord after transection. Acta. Physiol. Scand. 62: 115–118 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G., Bjorklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U. Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta. Physiol. Scand. (Suppl.) 373: 1–15 (1971).

    CAS  Google Scholar 

  • Brostom, C.O., and Kon, C. An improved protein binding assay for cyclic-AMP. Analytical Biochem. 58: 459–468 (1974).

    Article  Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., and Atack, C.V. Regulation of monoamine metabolism in the central nervous system. Pharmac. Rev. 24: 371–383 (1972).

    CAS  Google Scholar 

  • Carlsson, A., and Lindqvist, M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta. Pharmak. Toxicol. 20: 140–144 (1963).

    Article  CAS  Google Scholar 

  • Carlsson, A., Falck, B., Fuxe, K., Hillarp, N.A. Cellular localization of monoamines in the spinal cord. Acta. Physiol. Scand. 60: 112–119 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., and Atack, C.V. Effect of acute transection on the synthesis and turnover of 5-HT in the rat spinal cord. Nauyn-Schmiedeberg’s Arch. Pharmacol. 277: 1–12 (1973)

    Article  CAS  Google Scholar 

  • Costa, E., Guidotti, A., and Hanbauer, I. Do cyclic nucleotides promote trans-synaptic induction of tyrosine hydroxylase? Life Sciences 14: 1169–1188 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A. Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. Roy. Soc. Lond. B. 261: 325–358 (1971).

    Article  CAS  Google Scholar 

  • Dairman, W., Gordon, R., Spector, S., Sjoerdsma, A., and Udenfriend, S. Increased synthesis of catecholamines in the intact rat following administration of β-adrenergic blocking agents. Mol. Pharmac. 4: 457–464 (1968).

    CAS  Google Scholar 

  • Dontas, A.S., and Nickerson, M. Central and peripheral components of the action of “ganglionic” blocking agents. J. Pharmac. Exp. Ther. 12: 147–159 (1957).

    Google Scholar 

  • Doppman, J.L., Zivin, J.A. A rapid non-operative technique for producing spinal cord injury in animals. Inves. Radiol. 11: 150–151 (1976).

    Article  CAS  Google Scholar 

  • Gilman, A.G. A protein binding assay for adenosine 3′5′-cyclic monophosphate. Proc. Nat. Acad. Sci. 67: 305–312 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Gordon, R., Reid, J.V.O., Sjoerdsman, A., and Udenfriend, S. Increased synthesis of norepinephrine in rat heart on electrical stimulation of stellate ganglia. Mol. Pharmac. 2: 610–613 (1966).

    CAS  Google Scholar 

  • Gordon, R., Spector, S., Sjoerdsma, A., and Udenfriend, S. Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmac. Exp. Ther. 153: 440–447 (1966).

    CAS  Google Scholar 

  • Have, B.D., Neumayer, R.J., and Franz, D.N. Opposite effects of L-dopa and 5 hydroxytryptamine on spinal sympathetic reflexes. Nature 239: 336–337 (1972).

    Article  Google Scholar 

  • Iggo, A., and Vogt, M. Pre-ganglionic sympathetic activity in normal and reserpine treated cats. J. Physiol. (Lond.) 150: 114–133 (1960).

    CAS  Google Scholar 

  • Ideda, M., Fahien, L.A., and Undenfriend, S. A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol. Chem. 241: 4452–4456 (1966).

    Google Scholar 

  • Ito, A., and Schanberg, S.M. Central nervous system mechanisms responsible for blood pressure elevation induced by p-chlorophenylalanine. J. Pharmac. Exp. Ther. 181: 65–74 (1972).

    CAS  Google Scholar 

  • Jequier, F., Robinson, D.S., Lovenberg, W., and Sjoerdsma, A. Further studies on tryptophan hydroxylase in rat brain stem and beef pineal. Biochem. Pharmac. 18: 1071–1081 (1969).

    Article  CAS  Google Scholar 

  • Koe, B.K., and Weissman, A. p-Chlorophenylalanine: A specific depletor of brain serotonin. J. Pharmac. Exp. Ther. 154: 499–516 (1966).

    CAS  Google Scholar 

  • Kurosawa, A., Guidotti, A., and Costs, E. Induction of tyrosine-3-monooxygenase in adrenal medulla: role of protein kinase activation and translocation. Science 193: 691–693 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky, R., Gewirtz, G.P., Weise, V.K., and Kopin, I.J. Effect of dibutyryl cyclic AMP on adrenal catecholamine synthesizing enzymes in repeated immobilized hypophysectomized rats. Endocrinology 89: 50–55 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the prefused guinea pig heart. J. Pharmac. Exp. Ther. 148: 1–8 (1965).

    CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–274 (1951).

    PubMed  CAS  Google Scholar 

  • McKay, A.V.P., and Iversen, L.L. Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP. Brain Res. 48: 424–426 (1972).

    Article  Google Scholar 

  • Mueller, R.A., Theonen, H., and Axelrod, J. Compensatory increase in adrenal tyrosine hydroxylase activity after chemical sympathectomy Science 163: 468–469 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Mueller, R.A., Theonen, H., Axelrod, J. Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmac. Exp. Ther. 169: 74–79 (1969).

    CAS  Google Scholar 

  • Musacchio, J.M., and Wurzburger, R. Aggregation of beef adrenal tyrosine hydroxylase. Fed. Proc. 28: 287.

    Google Scholar 

  • Naftchi, N.E., Lowman, E.W., Sell, G.H., Rusk, H.A. Peripheral circulation and catecholamine metabolism in paraplegia and quadriplegia. Arch. Phys. Med. and Rehabil. 53: 357–362 (1972).

    CAS  Google Scholar 

  • Naftchi, N.E., Wooten, G.F., Lowman, E.W., Axelrod, J. Increased serum dopamine-β-hydroxylase activity during neurogenic hypertension in quadriplegia. In Frontiers in Catecholamine Research. G. Britain, Pergamon Press, 1973, pp. 1143–1147.

    Google Scholar 

  • Naftchi, N.E., Wooten, G.F., Lowman, E.W., Axelrod, J. Relationship between serum dopamine-3-hydroxylase activity, catecholamine metabolism, and hemodynamic change during paroxysmal hypertension in quadriplegia. Circ. Res. 35: 850–861 (1974).

    PubMed  CAS  Google Scholar 

  • Naftchi, N.E., Demeny, M., Lowman, E., Tuckman, J. Hypertensive crises in quadriplegic patients: changes in cardiac output, blood volume, serum dopamine-3-hydroxylase activity, and arterial prostaglandin PGE2- Circ. 57: 336–341 (1978).

    CAS  Google Scholar 

  • Naftchi, N.E., Demeny, M., DeCrescito, V., Tomasula, J., Flamm, S., Campbell, J.B. Biogenic amine concentrations in traumatized spinal cords of cats: effect of drug therapy. J. Neurosurg. 40: 52–57 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., and Undenfriend, S. A rapid and simple radioassay for tyrosine hydroxylase activity. Analytical Biochem. 9: 122–126 (1964).

    Article  CAS  Google Scholar 

  • Osterholm, J.L., Mathews, G.J. Altered norepinephrine metabolism following experimental spinal cord injury. Part I: Relationship to hemorrhagic necrosis and post-wounding neurological deficits. J. Neurosurg. 36: 386–394 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sato, T.L., Jequier, E., Lovenberg, W., and Sjoerdsma, A. Characterization of tryptophan hydroxylating enzyme from malignant mouse mast cell. Eur. J. Pharmacol. 1: 18–25 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Sedvall, C.C., and Kopin, I.J. Influence of sympathetic denervation and nerve impulse activity on tyrosine hydroxylase activity in the rat submaxillary gland. Biochem. Pharmac. 16: 39–46 (1967).

    Article  CAS  Google Scholar 

  • Theonen, H., Mueller, R.A., and Axelrod, J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmac. Exp. Ther. 169: 249–254 (1969).

    Google Scholar 

  • Waymere, J.C., Weiner, N., and Prasad, K.N. Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: Elevation induced by analogues of adenosine 3′,5′-cyclic monophosphate. Proc. Nat. Acad. Sci. (Wash.) 69: 2241–2245 (1971).

    Article  Google Scholar 

  • Weiner, N. Factors regulating catecholamine biosynthesis in peripheral and central catecholaminergic neurons. In The Nervous System, Vol. 1, The Basic Neurosciences, Raven Press, New York, 1975, pp. 341–354.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Naftchi, N.E., Kirschner, A.K., Demeny, M., Viau, A. (1982). Changes in the CNS Biogenic Amines and Tyrosine Hydroxylase Activity After Spinal Cord Transection in the Rat. In: Naftchi, N.E. (eds) Spinal Cord Injury. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6305-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6305-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6307-1

  • Online ISBN: 978-94-011-6305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics