Skip to main content

Glial Fibrillary Acidic Protein (GFA) and Neuroglial Scarring, A Review

  • Chapter

Abstract

A major goal of spinal cord injury research is to promote a vigorous growth of axons in mammalian spinal cord following transection, which is comparable to the regeneration that occur in fish and amphibia. The studies of Windle suggest that axons in the mammalian spinal cord are capable of regenerating and that the growth is aborted because of a dense neuroglial and connective tissue scar that develops at the site of transection. Yet, by the use of pharmacological agents (steroid hormones, pyrogenic drugs), it is possible to “loosen” the scar and thus allow regeneration to proceed for a longer period (Windle, 1956; Windle et al., 1956). More recently, similar conclusions have been reached by Matinian and Andreasian (1976).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antanitus, D.S., Choi, B.H. and Lapham, L.W. Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein. Brain Research 89: 363–367 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Antanitus, D.S., Choi, B.H., and Lapham, L.W. The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Research 103: 613–616 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Bairati, A. Propriétés Iriophysiques des fibres névrogliques. C.R. Ass. Anat. 44: 113–119 (1957).

    Google Scholar 

  • Benitz, W.E., Dahl, D., Williams, K.W. and Bignami, A. The protein composition of glial and nerve fibers. FEBS Letters 66: 285–289 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Research 49: 393–402 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neur. 153: 27–38 (1974a).

    Article  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252: 55–56 (1974b).

    Article  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. Glial fibrillary acidic protein in mutant mice with deficiency of myelination: Quaking and jimpy. Acta Neuropath. (Berl.) 28: 269–272 (1974c).

    Article  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. The development of Bergmann glia in mutant mice with cerebellar malformations: Reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neur. 155: 219–230 (1974d).

    Article  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. Astroglial protein in the developing spinal cord of the chick embryo. Develop. Biol. 44: 204–209 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., and Dahl, D. The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropathology and Applied Neurobiology 2: 99–111 (1976).

    Article  Google Scholar 

  • Bignami, A., Dahl, D. and Rueger, D.C. Isolation of neurofilament and glial filament proteins from water and urea extracts of nerve tissue. In Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain, S. Roberts, A. Lajtha and W.H. Gispen, editors. Elsevier, Amsterdam, 1978 (in press).

    Google Scholar 

  • Bignami, A., and Eng, L.F. Biochemical studies of myelin in Wallerian degeneration of rat optic nerve. J. Neurochem. 20: 165–173 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Reserach 43: 429–435 (1972).

    Article  CAS  Google Scholar 

  • Bignami, A., Forno, L., and Dahl, D. The neuroglial response to injury following spinal cord transection in the goldfish. Exp. Neurol. 44: 60–70 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M.G., Rubinstein, L.J., Bignami, A., and Herman, M.M. Characteristics of the rat C-6 glioma maintained in organ culture systems. Production of glial fibrillary acidic protein in the absence of gliofibrillo gene sis. Brain Research 82: 77–89 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M.G., Eng, L.F., Herman, M.M., Bensch, K.G., and Miles, L.E.M. Quantitative increase of neuroglia-specific GFA protein in rat C-6 glioma cells in vitro. Nature 255: 633–634 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Bock, E., Jørgensen, O.S., Dittmann, L. and Eng, L.F. Determination of brain-specific antigens in short term cultivated rat astroglial cells and in rat synaptosomes. J. Neurochem. 25: 867–870 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Bock, E., Møller, M., Nissen, C., and Sensenbrenner, M. Glial fibrillary acidic protein in primary astroglial cell cultures derived from newborn rat brain. FEBS Lett. 83: 207–211 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Chan, P.H., Huston, J.S., Moo-Penn, W., Dahl, D. and Bignami, A. Biochemical studies related to CNS regeneration: Isolation and characterization of urea-soluble gliofibrillary protein. In Proceedings of the Second Annual Maine Biomedical Science Symposium. (July 8–10, 1976) University of Maine Press, Vol. 2, pp. 496–524.

    Google Scholar 

  • Clemente, C.D. Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 6: 257–301 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Clemente, C.D. Structural regeneration in the mammalian central nervous system and the role of neuroglia and connective tissue. In Regeneration in the central nervous system, W.F. Windle, ed. Thomas, Springfield, p. 147, 1970.

    Google Scholar 

  • Dahl, D. Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates. Biochim. Biophys. Acta 420: 142–154 (1976a).

    CAS  Google Scholar 

  • Dahl, D. Isolation and initial characterization of glial fibrillary acidic protein from chicken, turtle, frog, and fish central nervous system. Biochem. Biophys. Acta 446: 41–50 (1976b).

    CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Glial fibrillary acidic protein from normal human brain. Purification and properties. Brain Research 57: 343–360 (1973a).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Research 61: 279–293 (1973b).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Heterogeneity of the glial fibrillary acidic protein in gliosed human brains. J. Neurol. Sci. 23: 551–563 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Glial fibrillary acidic protein from normal and gliosed human brain. Demonstration of multiple related polypeptides. Biochim. Biophys. Acta 386: 41–51 (1975a).

    CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Protein differences associated with the loss of myelinated axons and fibrillary gliosis in rat optic nerves following Wallerian degeneration. FEBS Letters 51: 313–316 (1975b).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Isolation from peripheral nerve of a protein similar to the glial fibrillary acidic protein. FEBS Letters 66: 281–284 (1976a).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Immunogenic properties of the glial fibrillary acidic protein. Brain Research 116: 150–157 (1976b).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Effect of sodium dodecyl sulfate on the immunogenic properties of the glial fibrillary acidic protein. J. Immunol. Methods 17: 201–209 (1977a).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Preparation of antisera to neurofilament protein from children brain and human sciatic nerve. J. Comp. Neur. 176: 645–658 (1977b).

    Article  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. Immunochemical cross-reactivity of normal neurofibrils and aluminum-induced neurofibrillary tangles. Immuno-fluorescence study with antineurofilament serum. Exp. Neurol. 58: 74–80 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Davison, P.F., and Winslow, B. The protein subunit of calf brain neurofilament. J. Neurobiol. 5: 119–133 (1974).

    Article  PubMed  CAS  Google Scholar 

  • DeVries, G.H., Eng, L.F., Lewis, D.H., and Hadfield, M.G. The protein composition of bovine myeline-free axons. Biochim. Biophys. Acta 439: 133–145 (1976).

    PubMed  Google Scholar 

  • Eng, L.F., Vanderhaeghen, J.J., Bignami, A., and Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Research 28: 351–354 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Frankel, R.D., and Koenig, E. Identification of major indigenous protein components in mammalian axons and locally synthesized axonal protein in hypoglossal nerve. Exp. Neurol. 57: 282–295 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, D.S., Newby, B.J., and Anderton, B.H. Neurofilament disguise, destruction and discipline. Nature 256: 586–589 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Gilden, D.H., Wroblewska, Z., Eng, L.F., and Rorke, L.B. Human brain in tissue culture. Part 5. Identification of glial cells by immunofluorescence. J. Neurol. Sci. 29: 177–184 (1976).

    Article  CAS  Google Scholar 

  • Huneeus, F.C., and Davison, P.F. Fibrillary proteins from squid axons. I. Neurofilament protein. J. Mol. Biol. 52: 415–428 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Huston, J.S., and Bignami, A. Structural properties of the glial fibrillary acidic protein. Evidence for intermolecular disulfide bonds. Biochim. Biophys. Acta 493: 97–103 (1977).

    Google Scholar 

  • Jacque, C.M., Jorgensen, O.S., and Bock, E. Quantitative studies of the brain specific antigens S-100, GFA, 14–3–2, D1, D2, D3 and C1 in quaking mouse. FEBS Letters 49: 264–266 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Jacque, C.M., Baumann, N.A., and Bock, E. Quantitative studies of the brain specific antigens FFA, 14–3–2, synaptin C1, D1, D2, D3 and D5 in jimpy mouse. Neurosci. Letters 3: 41–44 (1976).

    Article  CAS  Google Scholar 

  • Johnson, L., and Sinex, F.M. On the relationship of brain filaments to microtubules. J. Neurochem. 22: 321–326 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kozak, L.P., Eppig, J.J., Dahl, D., and Bignami, A. Ultrastructural and immunohistological characterization of a cell culture model for the study of neuronal-glial interactions. Devel. Biol. 59: 206–227 (1977).

    Article  CAS  Google Scholar 

  • Kozak, L.O., Dahl, D., and Bignami, A. Glial fibrillary acidic protein in reaggregating and monolayer cultures of fetal mouse cerebral hemispheres. Brain Res. (1978a, in press).

    Google Scholar 

  • Kozak, L.P., Eppig, J.J., Dahl, D., and Bignami, A. Enhanced neuronal expression in reaggregating cells of mouse cerebellum cultured in the presence of poly-L-lysine. Devel. Biol. (1978b) (in press).

    Google Scholar 

  • Lasek, R.J., and Krishnan, N. Identification of the proteins constituting 10 nm neurofilaments from the giant axon of Mixicola. Transactions of the American Society for Neurochemistry 6: 106 (1975).

    Google Scholar 

  • Lasek, R.J., and Wu, J.-Y. Immunochemical analysis of the proteins comprising myxicola (10 nm) neurofilaments. Neuroscience Abstracts Vol. II, Pt. 1, p. 40 (1976).

    Google Scholar 

  • Ludwin, S.K., Kosek, J.C., and Eng, L.F. The topographical distribution of S-100 and GFA proteins in the adult rat brain: An immunohistochemical study using horseradish peroxidase-labeled antibodies. J. Comp. Neur. 165: 197–208 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Manoury, R., Delpech, A., Delpech, B., Vidard, M.N., and Vedrenne, C. Presence of neurospecific antigen NSA 1 in fetal human astrocytes in long-term cultures. Brain Res. 112: 383–387 (1976).

    Article  Google Scholar 

  • Matinian, L.A., and Andreasian, A.S. Enzyme therapy in organic lesions of the spinal cord. Brain Information Service, UCLA, Los Angeles, 1976.

    Google Scholar 

  • Morgan, J.L., and Seeds, N.W. Tubulin constancy during morphological differentiation of mouse neuroblastoma cells. J. Cell Biol. 67: 136–145 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A. Rotation-mediated histogenetic aggregation of dissociated cells. Exp. Cell Res. 22: 455–475 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Privat, A. Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 40: 281–323 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145: 61–84 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., and Sidman, R.L. Weaver mutant mouse cerebellum: Defective neuronal migration secondary to abnormality of Bergmann glia. Proc. Nat. Acad. Sci. U.S.A. 70: 240–244 (1973).

    Article  CAS  Google Scholar 

  • Rueger, D.C., Dahl, D., and Bignami, A. Purification of a brain specific astroglial protein by immunoaffinity chromatography. 1978a (submitted for publication).

    Google Scholar 

  • Rueger, D.C., Dahl, D., and Bignami, A. Comparison of bovine glial fibrillary acidic protein with tubulin, 1978b (submitted for publication).

    Google Scholar 

  • Schachner, M., Hedley-Whyte, E.T., Hsu, D.W., Schoonmaker, G., and Bignami, A. Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling. J. Cell Biol. 75: 67–73 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer, W.W. Immunological and ultrastructural studies of neurofilaments isolated from rat peripheral nerve. J. Cell Biol. 74: 226–240 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer, W.W. and Lynch, R.G. Immunofluorescence studies of neurofilaments in the rat and human peripheral and central nervous system. J. Cell Biol. 74: 241–250 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Shook, W.J., and Norton, W.T. On the composition of axonal neurofilaments, Transactions of the American Society for Neurochemistry 6: 274 (1975).

    Google Scholar 

  • Shelanski, M.L., Albert, S., DeVries, G.H., and Norton, W.T. Isolation of filaments from brain. Science 174: 1242–1244 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sipe, J.C., Rubinstein, L.J., Herman, M.M., and Bignami, A. Ethylnitrosourea-induced astrocytomas. Morphological observations on rat tumors maintained in tissue and organ culture system. Lab. Inv. 31: 571–579 (1975).

    Google Scholar 

  • Terry, R.D., and Pena, C. Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis. J. Neuropath. Exp. Neurol. 24: 200–210 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Uyeda, C.T., Eng, L.F., and Bignami, A. Immunological study of the glial fibrillary acidic protein. Brain Research 37: 81–89 (1972).

    Article  PubMed  CAS  Google Scholar 

  • VandenBerg, S.R., Herman, M.M., Ludwin, S.K., and Bignami, A. An experimental mouse testicular teratoma as a model for neuroepithelial neoplasia and differentiation. Am. J. Path. 79: 147–168 (1975).

    Google Scholar 

  • VandenBerg, S.R., Ludwin, S.K., Herman, M.M., and Bignami, A. In vitro astrocytic differentiation from embryoid bodies of an experimental mouse testicular teratoma. Am. J. Path. 83: 197–206 (1976).

    Google Scholar 

  • Varon, S. Nerve growth factor and its mode of action. Exp. Neurol. 48: 75–92 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, J.E., Hinds, P.L., and Skoff, R.P. Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The multipotential glial. J. Comp. Neur. 140: 175–206 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, J.E., and Pease, D.C. Electron microscopic studies of Wallerian degeneration in rat optic nerve. II. Astrocytes, oligodendrocytes and adventitial cells. J. Comp. Neuro. 140: 207–226 (1970).

    Article  CAS  Google Scholar 

  • Vraa-Jensen, J., Herman, M.M., Rubinstein, L.J., and Bignami, A. In vitro characteristics of a fourth ventricle ependyoma maintained in organ culture systems: Light and electron microscopy observations. Neuropath, and Applied Neurobiol. 2:349–364 (1976).

    Article  Google Scholar 

  • Windle, W.F. Regeneration of axons in the vertebrate central nervous system. i. 36: 427–440 (1956).

    PubMed  CAS  Google Scholar 

  • Windle, W.F., Littrell, J.L., Smart, J.O., and Toralemon, J. Regeneration in the cord of spinal monkeys. Neurology 6: 420–428 (1956).

    PubMed  CAS  Google Scholar 

  • Yen, S.-H., Dahl, D., Schachner, M., and Shelanski, M.L. Biochemistry of the filaments of brain. Proc. Nat. Acad. Sci. U.S.A. 73: 529–533 (1976).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Bignami, A., Dahl, D. (1982). Glial Fibrillary Acidic Protein (GFA) and Neuroglial Scarring, A Review. In: Naftchi, N.E. (eds) Spinal Cord Injury. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6305-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6305-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6307-1

  • Online ISBN: 978-94-011-6305-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics