Skip to main content

Membrane functions

  • Chapter
Book cover Organ Preservation
  • 87 Accesses

Abstract

The use of hypothermic conditions for either storage or continuous perfusion of isolated organs has for some years been regarded as a prerequisite for their continuing viability. The rationale for such approaches has remained, however, largely empirical, and is based on the principle that if metabolism is responsible for tissue deterioration, and metabolic processes are temperature-dependent, then a reduction in temperature should lead to extended survival of isolated organs. The very fact that the application of hypothermic techniques has met with some success has proved to be a mixed blessing. On the one hand it has generated much research effort devoted to optimizing both the composition of perfusing media and the operating temperature. On the other hand it has tended to obscure a detailed appraisal of the effects of temperatureper se on cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, G.B. and Hawthorne, J.N. (1964). Phospholipids, Chemistry, Metabolism and Function. ( Amsterdam: Elsevier )

    Google Scholar 

  2. Quinn, P.J. (1976). The Molecular Biology of Cell Membranes. ( London: Macmillan )

    Google Scholar 

  3. Singer, S.J. and Nicolson, G.L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720

    Article  PubMed  CAS  Google Scholar 

  4. Singer, S. J. (1977). The fluid mosaic model of membrane structure. In Abrahamsson, S. and Pascher, I. (eds) Structure of Biological Membranes, pp. 443 - 461. ( New York: Plenum Press )

    Google Scholar 

  5. Henderson, R., Capaldi, R.A. and Leigh, J.S. (1977). Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J. Mol. Biol., 112, 631

    Article  PubMed  CAS  Google Scholar 

  6. Rosenkranz, J. (1977). New aspects of the ultrastructure of frog rod outer segments. Int. Rev. Cytol, 50, 25

    Article  PubMed  CAS  Google Scholar 

  7. Ross, M.J., Klymkowsky, M.W., Agard, D. A. and Stroud, R.M. (1977). Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. J. Mol. Biol., 116, 635

    Article  CAS  Google Scholar 

  8. Bangham, A. D., Standish, M. M. and Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13, 238

    Article  PubMed  CAS  Google Scholar 

  9. Huang, C. (1969). Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 8, 344

    Article  PubMed  CAS  Google Scholar 

  10. Hubbell, W.L. and McConnell, H.M. (1971). Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc., 93, 314

    Article  PubMed  CAS  Google Scholar 

  11. Jost, P., Waggoner, A.S. and Griffith, O.H. (1971). Spin labelling and membrane structure. In Rothfield, L.I. (ed.), Structure and Function of Biological Membranes, pp. 83 - 144. ( New York and London: Academic Press )

    Google Scholar 

  12. Horowitz, A.F., Horstey, W.J. and Klein, M.P. (1972). Magnetic resonance studies on membrane and model membrane systems: proton magnetic relaxation rates in sonicated lecithin dispersions. Proc. Natl. Acad. Sci. USA, 69, 590

    Article  Google Scholar 

  13. Seelig, J. and Niederberger, W. (1974). Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. A deuterium magnetic resonance study. J. Am. Chem. Soc., 96, 2069

    Article  CAS  Google Scholar 

  14. Shinitzky, M., Dianoux, A.C., Gitler, C. and Weber, G. (1971). Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I Synthetic micelles. Biochemistry, 10, 2106

    Article  PubMed  CAS  Google Scholar 

  15. Cogan, U., Shinitzky, M., Weber, G. and Nishida, T. (1973). Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry, 12, 521

    Article  PubMed  CAS  Google Scholar 

  16. Chapman, D. (1975). Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys., 8, 185

    Article  PubMed  CAS  Google Scholar 

  17. Ladbrooke, B.D. and Chapman, D. (1969). Thermal analysis of lipids, proteins and biological membranes. Chem. Phys. Lipids, 3, 304

    Article  PubMed  CAS  Google Scholar 

  18. Hinz, H.J. and Sturtevant, J.M. (1972). Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L-a-lecithins in aqueous suspension. J. Biol. Chem., 247, 3697

    PubMed  CAS  Google Scholar 

  19. Oldfield, E. and Chapman, D. (1972). Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett., 23, 285

    Article  PubMed  CAS  Google Scholar 

  20. Chapman, D., Urbina, J. and Keough, K.M. (1974). Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J. Biol. Chem., 249, 2512

    PubMed  CAS  Google Scholar 

  21. Phillips, M. C. and Finer, E. G. (1974). The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim. Biophys. Acta, 356, 199

    Article  PubMed  CAS  Google Scholar 

  22. Ladbrooke, B.D., Williams, R.M. and Chapman, D. (1968). Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta, 150, 333

    Article  PubMed  CAS  Google Scholar 

  23. Schreier-Muccillo, S., Marsh, D., Dugas, H., Schneider, H. and Smith, I.C.P. (1973). A spin probe study of the influence of cholesterol on the motion and orientation of phospholipids in oriented multi-bilayers and vesicles. Chem. Phys. Lipids, 10, 11

    Article  PubMed  CAS  Google Scholar 

  24. Ladbrooke, B.D., Jenkinson, T.J., Kamat, V.B. and Chapman, D. (1968). Physical studies of myelin. 1. Thermal analysis. Biochim. Biophys. Acta, 164, 101

    PubMed  CAS  Google Scholar 

  25. Chapman, D. and Urbina, J. (1971). Phase transition and bilayer structure of Mycoplasma laidlawii. FEBS Lett., 12, 169

    Article  CAS  Google Scholar 

  26. Fox, F.C. and Tsukagoshi, T. (1972). The influence of lipid phase transitions on membrane function and assembly. In Fox, C.F. (ed.), Membrane Research, p. 145. ( London and New York: Academic Press )

    Google Scholar 

  27. Curatolo, W., Verma, S.P., Sakura, J.D., Small, D.M., Shipley, G.G. and Wallach, F.H. (1978). Structural effects of myelin proteolipid apoprotein on phospholipids: a Raman spectroscopic study. Biochemistry, 17, 1802

    Article  PubMed  CAS  Google Scholar 

  28. Chapman, D., Cornell, B. A. and Quinn, P.J. (1977). Phase transitions, protein aggregation and a new method for modulating membrane fluidity. In Semenza, G. and Carafoli, (eds) Biochemistry of Membrane Transport. FEBS-Symposium No. 42, pp. 72 - 85. ( Berlin: Springer )

    Google Scholar 

  29. Hoffmann, W., Sarzala, G.M., Gomez-Fernandez, J.C., Goni, F.M., Restall, C.J., Chapman, D., Heppeler, G. and Kreutz, W. (1980). Protein rotational diffusion and lipid structure of reconstituted systems of Ca2+ activated adenosine triphosphate. J. Mol. Biol., 141, 119

    Article  PubMed  CAS  Google Scholar 

  30. Bottomley, J.M., Kramers, M.T.C. and Chapman, D. (1980). Cholesterol depletion from biomembranes of murine lymphocytes and human tonsil lymphocytes. FEBS Lett., 119, 261

    Article  PubMed  CAS  Google Scholar 

  31. Kramers, M.T.C., Patrick, J., Bottomley, J.M., Quinn, P.J. and Chapman, D. (1980). Studies of liposome interactions with rat thymocytes. Eur. J. Biochem., 110, 579

    Article  PubMed  CAS  Google Scholar 

  32. Cherry, R.J. (1979). Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta, 559, 289

    PubMed  CAS  Google Scholar 

  33. Hoffmann, W., Sarzala, M.G. and Chapman, D. (1979). Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2 +-activated ATPase. Proc. Natl. Acad. Sci. USA, 76, 3860

    Article  PubMed  CAS  Google Scholar 

  34. Poo, M. M. and Cone, R. A. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.), 247, 438

    Article  CAS  Google Scholar 

  35. Fowler, V. and Branton, D. (1977). Lateral mobility of human erythrocyte integral membrane proteins. Nature (Lond.), 268, 23

    Article  CAS  Google Scholar 

  36. Elgsaeter, A. and Branton, D. (1974). Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J. Cell Biol., 63, 1018

    Article  PubMed  CAS  Google Scholar 

  37. Kimelberg, H.K. and Papahadjopoulos, D. (1972). Phospholipid requirements for (Na+-K+)-ATPase activity, head-group specificity and fatty acid fluidity. Biochim. Biophys. Acta, 282, 277

    Article  PubMed  CAS  Google Scholar 

  38. Feo, F., Canuto, R.A., Garcea, R., Avogadro, A., Villa, M. and Celasco, M. (1976). Lipid phase transition and breaks in the Arrhenius plots of membrane-bound enzymes in mitochondria from normal rat liver and hepatoma AH-130. FEBS Lett., 72, 262

    Article  PubMed  CAS  Google Scholar 

  39. Inesi, G., Millman, M. and Eletr, S. (1973). Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J. Mol. Biol., 81, 483

    Article  PubMed  CAS  Google Scholar 

  40. Hensel, H., Bruck, K. and Raths, P. (1973). In Precht, H., Christopherson, J., Hensel, H. and Larcher, W. (eds) Temperature and Life, p. 505. ( Berlin: Springer )

    Google Scholar 

  41. Miller, K.W. and Pang, K-Y.Y. (1976). General anaesthetics can selectively perturb bilayer membranes. Nature (Lond.), 263, 253

    Article  CAS  Google Scholar 

  42. Trudell, J. R., Payan, D. G., Chin, J. H. and Cohen, E. N. (1975). The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipal- mitoyl-dimyristoyl phosphatidylcholine bilayers. Proc. Natl. Acad. Sci., USA, 72, 210

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 MTP Press Limited

About this chapter

Cite this chapter

Pringle, M.J. (1982). Membrane functions. In: Pegg, D.E., Jacobsen, I.A., Halasz, N.A. (eds) Organ Preservation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6267-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6267-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6269-2

  • Online ISBN: 978-94-011-6267-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics