Advertisement

Vascular disease and experimental diabetes

Chapter
  • 41 Downloads

Abstract

Although the production of arterial lesions in animals fed high fat and cholesterol diets had been described at the beginning of the twentieth century, and experimental models of diabetes were available at the time Banting and Best isolated insulin in 1920, it was not until the 1940s that attempts were made to study the interaction of diabetes and atherosclerosis in the experimental animal. The first report of vascular lesions in an animal with experimental diabetes was that of Dragstedt and colleagues in 19401. They noted that dogs which were pancreatectomized and kept alive with insulin injections had an abnormally high frequency of lipid-containing lesions in their aortas compared to control dogs.

Keywords

Smooth Muscle Cell Vascular Lesion Experimental Diabetes Aortic Smooth Muscle Cell Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dragstedt, L. R., Clark, D. E., Julian, O. C., Vermeulen, C. and Goodpasture, W. C. (1940). Arteriosclerosis in pancreatic diabetes. Surgery, 8, 353Google Scholar
  2. 2.
    Duff, G. L. and McMillan, G. C. (1949). The effect of alloxan diabetes on experimental atherosclerosis in the rabbit. I. The inhibition of experimental atherosclerosis in alloxan diabetes. II. The effect of alloxan diabetes on the retrogression of experimental cholesterol atherosclerosis. J. Exp. Med., 89, 611PubMedCrossRefGoogle Scholar
  3. 3.
    McGill, H. C. and Holman, R. L. (1949). The influence of alloxan diabetes on cholesterol atheromatosis in the rabbit. Proc. Soc. Exp. Biol. Med., 72, 72PubMedGoogle Scholar
  4. 4.
    Cook, D. L., Mills, L. M. and Green, O. M. (1954). The mechanism of alloxan protection in experimental atherosclerosis. J. Exp. Med., 99, 119PubMedCrossRefGoogle Scholar
  5. 5.
    Pierce, F. T. (1952). The relationship of serum lipoproteins to atherosclerosis in the cholesterol fed alloxanised rabbit. Circulation, 5, 401PubMedGoogle Scholar
  6. 6.
    Duff, G. L., Brechin, D. J. H. and Findelstein, W. E. (1954). The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit. IV. The effect of insulin therapy on the inhibition of atherosclerosis in the alloxan-diabetic rabbit. J. Exp. Med., 100, 371PubMedCrossRefGoogle Scholar
  7. 7.
    Beveridge, J. M. R. and Johnson, S. E. (1950). Studies on diabetic rats: production of cardiovascular and renal disease in diabetic rats. Br. J. Exp. Pathol, 31, 285PubMedGoogle Scholar
  8. 8.
    Kalant, N. and Harland, W. A. (1961). The effect of an atherogenic diet on normal and alloxan diabetic rats. Can. Med. Assoc. J., 84, 251PubMedGoogle Scholar
  9. 9.
    Kalant, N., Teitelbaum, J. I., Cooperberg, A. A. and Harland, W. A. (1964). Dietary atherogenesis in alloxan diabetes. J. Lab. Clin. Med., 63, 147PubMedGoogle Scholar
  10. 10.
    Still, W. J. S., Martin, J. M. and Gregor, W. H. (1964). The effect of alloxan diabetes on experimental atherosclerosis in the rat. Exp. Mol. Pathol, 3, 141CrossRefGoogle Scholar
  11. 11.
    Lehner, N. D. M., Clarkson, T. E. and Lofland, H. B. (1971). The effect of insulin deficiency, hypothyroidism, and hypertension on atherosclerosis in the squirrel monkey. Exp. Mol. Pathol., 15, 230PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson, R. B., Martin, J. M. and Hartroft, W. S. (1967). Evaluation of the relative pathogenic roles of diabetes and serum cholesterol levels in the development of cardiovascular lesions in rats. Diabetes, 16, 71PubMedGoogle Scholar
  13. 13.
    Reinila, A., Akerblom, H. K. and Scow, R. O. (1980). Accumulation of lipid in muscular arteries of short-term diabetic rats. Diabetologia, 19, 529PubMedCrossRefGoogle Scholar
  14. 14.
    Wexler, B. C. and Sangrey, D. G. (1980). Good versus moderate regulation of alloxan- induced diabetes in arteriosclerotic and nonarteriosclerotic rats. Diabetologia, 19, 242PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson, R. B., Martin, J. M. and Hartroft, W. S. (1969). Failure of insulin therapy to prevent cardiovascular lesions in diabetic rats fed an atherogenic diet. Diabetes, 18, 225PubMedGoogle Scholar
  16. 16.
    Stamler, J., Pick, R. and Katz, L. N. (1960). Effect of insulin in the induction and regression of atherosclerosis in the chick. Circ. Res., 8, 572PubMedGoogle Scholar
  17. 17.
    Cruz, A. B., Amatuzio, D. S., Grande, F. and Hay, L. J. (1961). Effect of intra-arterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circ. Res., 9, 39PubMedGoogle Scholar
  18. 18.
    Stout, R. W. (1970). Development of vascular lesions in insulin-treated animals fed a normal diet. Br. Med. J., 3, 685PubMedCrossRefGoogle Scholar
  19. 19.
    Stout, R. W., Buchanan, K. D. and Vallance-Owen, J. (1973). The relationship of arterial disease and glucagon metabolism in insulin-treated chickens. Atherosclerosis, 18, 153PubMedCrossRefGoogle Scholar
  20. 20.
    Renold, A. E., Gonet, A. E., Stauffacher, W. and Jeanrenaud, B. (1968). Laboratory animals with spontaneous diabetes and/or obesity: suggested suitability for the study of spontaneous atherosclerosis. Prog. Biochem. Pharmacol., 4, 363Google Scholar
  21. 21.
    Marquie, G. (1978). Effect of insulin in the induction and regression of experimental cholesterol atherosclerosis in the rabbit. Postgrad. Med. J., 54, 80PubMedCrossRefGoogle Scholar
  22. 22.
    Foster, D. W. and Siperstein, M. D. (1960). Effect of diabetes on cholesterol and fatty acid synthesis in the rat aorta. Am. J. Physiol., 198, 25PubMedGoogle Scholar
  23. 23.
    Wong, R. K. L. and Van Bruggen, J. T. (1962). Lipid metabolism in the diabetic rat. VI. Metabolic activity of the aorta. Acta Physiol. Latin Am., 12, 390Google Scholar
  24. 24.
    Wertheimer, H. E. and Ben-Tor, V. (1962). Influence of diabetes on carbohydrate metabolism of aortic tissue. Diabetes, 11, 422PubMedGoogle Scholar
  25. 25.
    Mulcahy, P. D. and Winegrad, A. I. (1962). Effects of insulin and alloxan diabetes on glucose metabolism in rabbit aortic tissue. Am. J. Physiol., 203, 1038Google Scholar
  26. 26.
    Urrutia, G., Beaven, D. W. and Cahill, G. F. (1962). Metabolism of glucose-U-C14 in rat aorta in vitro. Metabolism, 11, 530PubMedGoogle Scholar
  27. 27.
    Stout, R. W., Buchanan, K. D. and Vallance-Owen, J. (1972). Arterial lipid metabolism in relation to blood glucose and plasma insulin in rats with streptozotocin-induced diabetes. Diabetologia, 8, 398PubMedCrossRefGoogle Scholar
  28. 28.
    Lundholm, L. and Mohme-Lundholm, E. (1962). Effect of insulin on the carbohydrate metabolism of smooth muscle. Acta Physiol. Scand., 57, 130CrossRefGoogle Scholar
  29. 29.
    Arnqvist, H. J. (1971). Studies of monosaccharide permeability of arterial tissue and intestinal smooth muscle; effects of insulin. Acta Physiol. Scand., 83, 247PubMedCrossRefGoogle Scholar
  30. 30.
    Stout, R. W. (1968). Insulin stimulated lipogenesis in arterial tissue in relation to diabetes and atheroma. Lancet, 2, 702PubMedCrossRefGoogle Scholar
  31. 31.
    Stout, R. W. (1969). Insulin stimulation of cholesterol synthesis by arterial tissue. Lancet, 2, 467PubMedCrossRefGoogle Scholar
  32. 32.
    Capron, L., Housset, E. and Hartmann, L. (1980). Effects of in vitro and in vivo exposure to insulin upon glucose carbon accumulation in rat aorta: different patterns of response for intima-media and adventitia. Metabolism, 29, 859PubMedCrossRefGoogle Scholar
  33. 33.
    Hruza, Z. (1971). Effect of endocrine factors on cholesterol turnover in young and old rats. Exp. Gerontol., 6, 199PubMedCrossRefGoogle Scholar
  34. 34.
    Matsuda, I. and Kalant, M. (1966). Effect of alloxan diabetes on cholesterol flux into aorta. Diabetes, 15, 604PubMedGoogle Scholar
  35. 35.
    Somer, J. B. and Schwartz, C. J. (1976). Regulation of lipid metabolism in the normal pig aorta. 2. Influence of insulin and epinephrine on lipid synthesis from (1-14C) acetate. Atherosclerosis, 23, 215CrossRefGoogle Scholar
  36. 36.
    Somer, J. B. and Schwartz, C. J. (1976). Focal differences in lipid metabolism of the young pig aorta. IV. Influence of insulin and epinephrine on lipogenesis from (14C)-U-glucose. Exp. Mol. Pathol., 24, 129PubMedCrossRefGoogle Scholar
  37. 37.
    Somer, J. B. and Schwartz, C. J. (1976). Regulation of lipid metabolism in the normal pig aorta. Atherosclerosis, 23, 201, 215CrossRefGoogle Scholar
  38. 38.
    Somer, J. B., Gerrity, R. G. and Schwartz, C. J. (1976). Focal differences in lipid metabolism of the young pig aorta. III. Influence of insulin on lipogenesis from (1-14C) acetate. Exp. Mol. Pathol., 24, 1PubMedCrossRefGoogle Scholar
  39. 39.
    Chobanian, A. V., Gerritsen, G. C., Brecher, P. I. and McCombs, L. (1974). Aortic glucose metabolism in the diabetic Chinese hamster. Diabetologia, 10, 589PubMedCrossRefGoogle Scholar
  40. 40.
    O’Dea, K., Klapovitz, H. and Marino, A. (1977). Effect of meal feeding on insulin sensitivity and incorporation of (U14C) glucose into lipids in rat aorta. J. Nutr., 107, 1896PubMedGoogle Scholar
  41. 41.
    O’Dea, K. (1978). Effects of fasting and refeeding on the in vitro insulin sensitivity of rat aorta. Horm. Metab. Res., 10, 52PubMedCrossRefGoogle Scholar
  42. 42.
    O’Dea, K., Tank, C., Klapovitz, H. and Marino, A. J. (1978). Development of insulin sensitivity in rat aorta after chronic propranolol treatment. Eur. J. Pharmacol, 47, 63PubMedCrossRefGoogle Scholar
  43. 43.
    Capron, L., Philippe, M., Guilmot, J.-L., Fiessinger, J.-N. and Housset, E. (1981). Effects of insulin exposure upon the metabolism of rat aortic media: influence of hydrostatic forces. Arteriosclerosis, 1, 345PubMedCrossRefGoogle Scholar
  44. 44.
    Mahler, R. (1971). The effect of diabetes and insulin on biochemical reactions of the arterial wall. Acta Diabet. Lat., 8, 63Google Scholar
  45. 45.
    Chmelar, M. and Chmelarova, M. (1969). Lipolytic effect of insulin and other hormones in vitro in aortic tissue of experimental animals. Experientia, 24, 1118CrossRefGoogle Scholar
  46. 46.
    Orimo, H., Sakurada, T., Ito, H., Okabe, H., Noma, A. and Murakami, M. (1975). Lipid metabolism in aorta of rats with streptozotocin-induced diabetes. Artery, 1, 335Google Scholar
  47. 47.
    Agren, A. and Arnqvist, H. J. (1981). Influence of diabetes on enzyme activities in rat aorta. Diabete Metab. (Paris), 7, 19Google Scholar
  48. 48.
    Wolinsky, H. and Fowler, S. (1978). Participation of lysosomes in atherosclerosis. N. Engl. J. Med., 299, 1173PubMedCrossRefGoogle Scholar
  49. 49.
    Wolinsky, H., Goldfischer, S., Capron, L., Capron, F., Coltoff-Schiller, B. and Kasak, L. (1978). Hydrolase activities in the rat aorta. 1. Effects of diabetes mellitus and insulin treatment. Circ. Res., 47, 821Google Scholar
  50. 50.
    Ross, R. (1971). The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibres. J. Cell Biol., 50, 172PubMedCrossRefGoogle Scholar
  51. 51.
    Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest., 52, 2745PubMedCrossRefGoogle Scholar
  52. 52.
    Gimbrone, M. A. Jr., Cotran, R. S. and Folkman, J. (1974). Human vascular endothelial cells in culture. J. Cell Biol., 60, 673PubMedCrossRefGoogle Scholar
  53. 53.
    Stout, R. W., Bierman, E. L. and Ross, R. (1975). Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ. Res., 36, 319PubMedGoogle Scholar
  54. 54.
    Pfeifle, B., Ditschuneit, H. H. and Ditschuneit, H. (1980). Insulin as a cellular growth regulator of rat arterial smooth muscle cells in vitro. Horm. Metab. Res., 12, 381PubMedCrossRefGoogle Scholar
  55. 55.
    Weinstein, R., Stemerman, M. B. and Maciag, T. (1981). Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science, 212, 818PubMedCrossRefGoogle Scholar
  56. 56.
    Pfeifle, B. and Ditschuneit, H. (1981). Effect of insulin on growth of cultured human arterial smooth muscle cells. Diabetologia, 20, 155PubMedCrossRefGoogle Scholar
  57. 57.
    Taggart, H. and Stout, R. W. (1980). Control of DNA synthesis in cultured vascular endothelial and smooth muscle cells. Atherosclerosis, 37, 549PubMedCrossRefGoogle Scholar
  58. 58.
    Stout, R. W. (1977). The effect of insulin and glucose on sterol synthesis in cultured rat arterial smooth muscle cells. Atherosclerosis, 27, 271PubMedCrossRefGoogle Scholar
  59. 59.
    Stout, R. W. (1978). Relative insensitivity to glucagon of sterol synthesis in cultured rat aortic smooth muscle cells. Effect of dibutyryl cyclic AMP. Diabetologia, 15, 323PubMedCrossRefGoogle Scholar
  60. 60.
    Chait, A., Bierman, E. L. and Albers, J. J. (1978). Regulatory role of insulin in the degradation of low density lipoprotein by cultured human skin fibroblasts. Biochim. Biophys. Acta, 529, 292PubMedGoogle Scholar
  61. 61.
    Bar, R. S., Hoak, J. C. and Peacock, M. L. (1978). Insulin receptors in human endothelial cells: identification and characterisation. J. Clin. Endocrinol. Metab., 47, 699PubMedCrossRefGoogle Scholar
  62. 62.
    Bar, R. S., Peacock, M. L., Spanheimer, R. G., Veenstra, R. and Hoak, J. C. (1980). Differential binding of insulin to human arterial and venous endothelial cells in primary culture. Diabetes, 29, 991PubMedCrossRefGoogle Scholar
  63. 63.
    Turner, J. L. and Bierman, E. L. (1978). Effects of glucose and sorbitol on proliferation of cultured human skin fibroblasts and arterial smooth muscle cells. Diabetes, 27, 583PubMedCrossRefGoogle Scholar
  64. 64.
    Stout, R. W. (1982). Glucose inhibits replication of cultured human endothelial cells. Diabetologia. (In press)Google Scholar
  65. 65.
    Ledet, T., Fischer-Dzoga, K. and Wissler, R. W. (1976). Growth of rabbit aortic smooth muscle cells cultured in media containing diabetic and hyperlipemic serum. Diabetes, 25, 207PubMedCrossRefGoogle Scholar
  66. 66.
    Ledet, T. (1976). Growth hormone stimulates the growth of arterial medial cells in vitro. Diabetes, 25, 1011PubMedCrossRefGoogle Scholar
  67. 67.
    Ledet, T. (1977). Growth hormone antiserum suppresses the growth effect of diabetic serum. Diabetes, 26, 798PubMedCrossRefGoogle Scholar
  68. 68.
    Chamley-Campbell, J. H. and Campbell, G. R. (1981). What controls smooth muscle phenotype? Atherosclerosis, 40, 347PubMedCrossRefGoogle Scholar
  69. 69.
    Koschinsky, T., Bunting, C. E., Schwippert, B. and Gries, F. A. (1979). Increased growth of human fibroblasts and arterial smooth muscle cells from diabetic patients related to diabetic serum factors and cell origin. Atherosclerosis, 33, 245PubMedCrossRefGoogle Scholar
  70. 70.
    Koschinsky, T., Bunting, C. E., Schwippert, B. and Gries, F. A. (1980). Increased growth stimulation of fibroblasts from diabetics by diabetic serum factors of low molecular weight. Atherosclerosis, 37, 311PubMedCrossRefGoogle Scholar
  71. 71.
    King, G. L., Kahn, C. R., Rechler, M. M. and Nissley, S. P. (1980). Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulin-like growth factor) using antibodies to the insulin receptor. J. Clin. Invest., 66, 130PubMedCrossRefGoogle Scholar
  72. 72.
    Wight, T. N. (1980). Vessel proteoglycans and thrombogenesis. In Spaet, T. H. (ed.) Progress in Hemostasis and Thrombosis. Vol. 5. (New York: Grune & Stratton)Google Scholar
  73. 73.
    Wight, T. N. and Ross, R. (1975). Proteoglycans in primate arteries. II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J. Cell Biol., 67, 675PubMedCrossRefGoogle Scholar
  74. 74.
    Deudon, E., Breton, M., Berrou, E. and Picard, J. (1980). Metabolism of glycosaminoglycans in cultured smooth muscle cells from pig aorta. Biochemie, 62, 811CrossRefGoogle Scholar
  75. 75.
    Stevens, R. L., Nissley, S. P., Kimura, J. H., Rechler, M. M., Caplan, A. I. and Hascall, V. C. (1981). Effects of insulin and multiplication-stimulating activity on proteoglycan biosynthesis in chondrocytes from the swarm rat chondrosarcoma. J. Biol. Chem., 256, 2045PubMedGoogle Scholar
  76. 76.
    Ronnemaa, T., Jarvelainen, H., Lehtonen, A. et al. (1980). Serum lipoprotein composition, hormones and the synthesis of glycosaminoglycans by human aortic smooth muscle cells. Artery, 8, 323PubMedGoogle Scholar
  77. 77.
    Sirek, O. V., Sirek, A. and Cukerman, E. (1980). Arterial glycosaminoglycans in diabetic dogs. Blood Vessels, 17, 271PubMedGoogle Scholar
  78. 78.
    Sirek, O. V., Sirek, A. and Cukerman, E. (1981). Intermittent hyperinsulinaemia and arterial glycosaminoglycans in dogs. Diabetologia, 21, 154PubMedCrossRefGoogle Scholar
  79. 79.
    Ross, R. and Klebanoff, S. J. (1971). The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J. Cell Biol., 50, 159PubMedCrossRefGoogle Scholar
  80. 80.
    Burke, J. M. and Ross, R. (1977). Collagen synthesis by monkey arterial smooth muscle cells during proliferation and quiescence in culture. Exp. Cell Res., 107, 387PubMedCrossRefGoogle Scholar
  81. 81.
    Layman, D. L., Epstein, E. H., Dodson, R. F. and Titus, J. L. (1977). Biosynthesis of type I and III collagens by cultured smooth muscle cells from human aorta. Proc. Natl. Acad. Sci. USA, 74, 671PubMedCrossRefGoogle Scholar
  82. 82.
    Salcedo, L. L. and Franzblau, C. (1981). Collagen synthesis and accumulation in longterm rabbit aortic smooth muscle cell cultures. In Vitro, 17, 114PubMedCrossRefGoogle Scholar
  83. 83.
    Abraham, P. A., Smith, D. W. and Carnes, W. H. (1974). Synthesis of soluble elastin by aortic medial cells in culture. Biochem. Biophys. Res. Commun., 58, 597PubMedCrossRefGoogle Scholar
  84. 84.
    Narayanan, A. S., Sandberg, L. B., Ross, R. and Layman, D. L. (1976). The smooth muscle cell. III. Elastin synthesis in arterial smooth muscle cell culture. J. Cell Biol., 68, 411PubMedCrossRefGoogle Scholar
  85. 85.
    Ledet, T. and Luust, J. (1980). Arterial procollagen type I, type III and fibronectin. Effects of diabetic serum, glucose, insulin, ketones and growth hormone studied on rabbit aortic myomedial cell cultures. Diabetes, 29, 964PubMedGoogle Scholar
  86. 86.
    Smith, B. D. and Silbert, C. K. (1981). Fibronectin and collagen of cultured skin fibroblasts in diabetes mellitus. Biochem. Biophys. Res. Commun., 100, 275PubMedCrossRefGoogle Scholar
  87. 87.
    Moneada, S., Gryglewski, R., Bunting, S. and Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature (London), 263, 663CrossRefGoogle Scholar
  88. 88.
    Gerrard, J. M., Stuart, M. J., Rao, G. H. R. et al. (1980). Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J. Lab. Clin. Invest., 95, 950Google Scholar
  89. 89.
    Harrison, H. E., Reece, A. H. and Johnson, M. (1980). Effect of insulin treatment on prostacyclin in experimental diabetes. Diabetologia, 18, 65PubMedCrossRefGoogle Scholar
  90. 90.
    Silberbauer, K., Clopath, P., Sinzinger, H. and Schernthaner, G. (1980). Effect of experimentally induced diabetes on swine vascular prostacyclin (PGI2) synthesis. Artery, 8, 30PubMedGoogle Scholar
  91. 91.
    Ross, R. (1981). Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis, 1, 293PubMedCrossRefGoogle Scholar

Copyright information

© R. W. Stout 1982

Authors and Affiliations

  1. 1.The Queen’s University of BelfastUK

Personalised recommendations