The pathogenesis of atherosclerosis



The normal artery is divided into three layers: the intima, media and adventitia. The adventitia consists of connective and adipose tissue, and its function is to relate the vessel to the surrounding tissues. It plays no part in the development of atherosclerosis and will not be considered further here. The media consists of smooth muscle cells, concentrically and longitudinally arranged. It is separated from the adventitia by the external elastic lamina and from the intima by the much more distinct fenestrated internal elastic lamina. The intima lines the luminal surface of the artery and consists of a thin layer of connective tissue containing, in the normal older artery, a small number of smooth muscle cells, and a single layer of epithelium-like endothelial cells. Atherosclerosis is a disease of the intima and inner media. The cells involved in the process are therefore endothelial and smooth muscle cells.


Smooth Muscle Cell Lipoprotein Lipase Smooth Muscle Cell Proliferation Fatty Streak Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gimbrone, M. A. Jr. (1979). Endothelial dysfunction and the pathogenesis of atherosclerosis. In Gotto, A. M., Smith, L. C. and Allen, B. (eds.) Atherosclerosis. Vol. 5, pp. 415–26. (New York: Springer-Verlag)Google Scholar
  2. 2.
    Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest., 52, 2745PubMedCrossRefGoogle Scholar
  3. 3.
    Gimbrone, M. A. Jr, Cotran, R. S. and Folkman, J. (1974). Human vascular endothelial cells in culture. J. Cell. Biol., 60, 673PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz, S. M., Gajdusek, C. M. and Selden, S. C. III. (1981). Vascular wall growth control: the role of the endothelium. Arteriosclerosis, 1, 107PubMedCrossRefGoogle Scholar
  5. 5.
    Taggart, H. and Stout, R. W. (1980). Control of DNA synthesis in cultured vascular endothelial and smooth muscle cells — response to serum, platelet-deficient serum, lipidfree serum, insulin and oestrogens. Atherosclerosis, 37, 549PubMedCrossRefGoogle Scholar
  6. 6.
    Stout, R. W. (1982). Cyclic AMP: a potent inhibitor of DNA synthesis in cultured arterial endothelial and smooth muscle cells. Diabetologia, 22, 51PubMedCrossRefGoogle Scholar
  7. 7.
    Stout, R. W. (1982). Glucose inhibits DNA synthesis in cultured human endothelial cells. Diabetologia. (In press)Google Scholar
  8. 8.
    Chamley-Campbell, J., Campbell, G. R. and Ross, R. (1979). The smooth muscle cell in culture. Physiol. Rev., 59, 1PubMedGoogle Scholar
  9. 9.
    Chamley-Campbell, J. H. and Campbell, G. R. (1981). What controls smooth muscle phenotype? Atherosclerosis, 40, 347PubMedCrossRefGoogle Scholar
  10. 10.
    Ross, R. (1971). The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibres. J. Cell Biol., 50, 172PubMedCrossRefGoogle Scholar
  11. 11.
    Bierman, E. L. and Albers, J. J. (1975). Lipoprotein uptake by cultured human arterial smooth muscle cells. Biochim. Biophys. Acta, 388, 198PubMedGoogle Scholar
  12. 12.
    Fischer-Dzoga, K., Fraser, R. and Wissler, R. W. (1976). Stimulation of proliferation in stationary primary cultures of monkey and rabbit aortic smooth muscle cells. I. Effects of lipoprotein fractions of hyperlipemic serum and lymph. Exp. Mol. Pathol., 24, 346PubMedCrossRefGoogle Scholar
  13. 13.
    Ross, R. and Glomset, J. A. (1973). Atherosclerosis and the arterial smooth muscle cell. Science, 180, 1332PubMedCrossRefGoogle Scholar
  14. 14.
    Ledet, T. (1976). Growth of rabbit aortic smooth muscle cells in serum from patients with juvenile diabetes. Acta Pathol. Microbiol. Scand., Sect. A, 84, 508Google Scholar
  15. 15.
    Ledet, T. (1977). Growth hormone antiserum suppresses the growth effect of diabetic serum. Diabetes, 26, 798PubMedCrossRefGoogle Scholar
  16. 16.
    Stout, R. W., Bierman, E. L. and Ross, R. (1975). Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ. Res., 36, 319PubMedGoogle Scholar
  17. 17.
    Ross, R. and Vogel, A. (1978). The platelet-derived growth factor. Cell, 14, 203PubMedCrossRefGoogle Scholar
  18. 18.
    Huttner, J. J., Gwebu, E. T., Panganamala, R. V., Milo, G. E. and Cornwell, D.G. (1977). Fatty acids and their prostaglandin derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science, 197, 289PubMedCrossRefGoogle Scholar
  19. 19.
    Pearson, T. A., Dillman, J. M., Solez, K. and Heptinstall, R. H. (1980). Evidence for two populations of fatty streaks with different roles in the atherogenic process. Lancet, 2, 496PubMedCrossRefGoogle Scholar
  20. 20.
    Gerrity, R. G. (1981). The role of the monocyte in atherogenesis. Am. J. Pathol., 103, 181PubMedGoogle Scholar
  21. 21.
    Haust, M. D. and More, R. H. (1972). Development of modern theories on the pathogenesis of atherosclerosis. In Wissler, R. W. and Geer, J. C. (eds.). The Pathogenesis of Atherosclerosi., pp. 1–19. (Baltimore: Williams & Wilkins)Google Scholar
  22. 22.
    Ross, R. and Glomset, J. A. (1976). The pathogenesis of atherosclerosis. N. Engl. J. Med., 295, 369, 420PubMedCrossRefGoogle Scholar
  23. 23.
    Spaet, T. H., Stemerman, M. B., Veith, F. J. and Lejnieks, I. (1975). Intimal injury and regrowth in the rabbit aorta. Medial smooth muscle cells as a source of neointima. Circ. Res., 36, 58PubMedGoogle Scholar
  24. 24.
    Friedman, R. J., Stemerman, M. B., Wenz, B. et al. (1977). The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J. Clin. Invest., 60, 1191PubMedCrossRefGoogle Scholar
  25. 25.
    Fuster, V., Bowie, E. J. W., Lewis, J. C., Fass, D. N., Owen, C. A. Jr and Brown, A. L. (1977). Resistance to arteriosclerosis in pigs with von Willebrand’s disease. Spontaneous and high cholesterol diet-induced arteriosclerosis. J. Clin. Invest., 61, 722CrossRefGoogle Scholar
  26. 26.
    Benditt, E. P. and Benditt, J. M. (1973). Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci., USA, 70, 1753PubMedCrossRefGoogle Scholar
  27. 27.
    Pearson, T. A., Dillman, J. M., Solez, K. and Heptinstall, R. H. (1978). Clonal markers in the study of the origin and growth of human atherosclerotic lesions. Circ. Res., 43, 10PubMedGoogle Scholar
  28. 28.
    Wolinsky, H. (1980). A proposal linking clearance of circulating lipoproteins to tissue metabolic activity as a basis for understanding atherogenesis. Circ. Res., 47, 301PubMedGoogle Scholar
  29. 29.
    Martin, G. M. and Sprague, C. A. (1973). Symposium on in vitro studies related to atherogenesis life histories of hyperplastoid cell lines from aorta and skin. Exp. Mol. Pathol., 18, 125PubMedCrossRefGoogle Scholar
  30. 30.
    Lewis, B. (1976). The hyperlipidemias. Clinical and laboratory practice. (Oxford: Blackwell)Google Scholar
  31. 31.
    Brunzell, J. D., Chait, A. and Bierman, E. L. (1978). Pathophysiology of lipoprotein transport. Metabolism, 27, 1109PubMedCrossRefGoogle Scholar
  32. 32.
    Brown, M. S., Kovanen, P. T. and Goldstein, J. L. (1981). Regulation of plasma cholesterol by lipoprotein receptors. Science, 212, 628PubMedCrossRefGoogle Scholar
  33. 33.
    Beirman, E. L., Eisenberg, S., Stein, O. and Stein, Y. (1973). Very low density lipoprotein ‘remnant’ particles: uptake by aortic smooth muscle cells in culture. Biochim. Biophys. Acta, 329, 163CrossRefGoogle Scholar
  34. 34.
    Floren, C.-H., Albers, J. J. and Bierman, E. L. (1981). Uptake of chylomicron remnants causes cholesterol accumulation in cultured human arterial smooth muscle cells. Biochim. Biophys. Acta, 663, 336PubMedGoogle Scholar
  35. 35.
    Carew, T. E., Koschinsky, T., Hayes, S. B. and Steinberg, D. (1976). A mechanism by which high density lipoproteins may slow the atherogenetic process. Lancet, 1, 1315PubMedCrossRefGoogle Scholar
  36. 36.
    Goldstein, J. L., Ho, Y. K., Basu, S. K. and Brown, M. S. (1979). Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci., USA, 76, 333PubMedCrossRefGoogle Scholar
  37. 37.
    Chait, A., Bierman, E. L. and Albers, J. J. (1978). Regulatory role of insulin in the degradation of low density lipoprotein by cultured human skin fibroblasts. Biochim. Biophys. Acta, 529, 292PubMedGoogle Scholar
  38. 38.
    Chait, A., Bierman, E. L. and Albers, J. J. (1979). Regulatory role of triiodothyronine in the degradation of low density lipoprotein by cultured human skin fibroblasts. J. Clin. Endocrinol. Metab., 48, 887PubMedCrossRefGoogle Scholar
  39. 39.
    Chait, A., Ross, R., Albers, J. J. and Bierman, E. L. (1980). Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc. Natl. Acad. Sci., USA, 77, 4084PubMedCrossRefGoogle Scholar
  40. 40.
    Stout, R. W. and Bierman, E. L. (1982). Dibutyryl cyclic AMP inhibits LDL binding in cultured fibroblasts and arterial smooth muscle cells. Atherosclerosis (in press)Google Scholar

Copyright information

© R. W. Stout 1982

Authors and Affiliations

  1. 1.The Queen’s University of BelfastUK

Personalised recommendations