Skip to main content

Sodium-Driven Transport A Re-evaluation of the Sodium-Gradient Hypothesis

  • Chapter
Intestinal Ion Transport

Abstract

The sodium-gradient hypothesis (SGH) was originally proposed to explain the uphill transport of certain organic solutes,† particularly sugars and amino acids, in the small intestine as well as in several other cells and tissues1,2,3,4. The molecular basis of this transport is assumed to consist of a typical mobile carriermechanism5 that is made asymmetrical by virtue of its being coupled to the opposite transmembrane gradients of the alkali metal ions, Na+ and K+. The fundamental concept underlying the hypothesis is that of cotransport 6. Organic solute and Na+ would interact at the level of a carrier with distinct but (allosterically) related binding sites for each of these two species. The concept of cotransport includes the twin concepts of reciprocal activationand coupled flows:binding and the ensuing influx of one species activates the binding and influx of its partner. As a corollary, reciprocal inhibitory effects and countertransportmay also be explained through, and be a part of, the same mechanism6. In fact, such opposite activating and inhibitory roles were assigned by Crane to Na+ and K+ respectively2. The prevailing extracellular cation, Na+, would stimulate solute influx by cotransport, while the prevailing intracellular cation, K+, would inhibit the efflux and perhaps move out of the cell by countertransport. The concerted effect of the two cations would be the net accumulation of the organic solute within the enterocyte.

On special leave from the University of Puerto Rico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crane, R. K., Miller, D. and Bihler, I. (1961). Restrictions on the possible mechanisms of intestinal active transport of sugars. In A. Kleinzeller and A. Kotyk (eds.). Membrane Transport and Metabolism, p. 439 (New York: Academic Press)

    Google Scholar 

  2. Crane, R. K. (1965). Na+-dependent transport in the intestine and other animal tissues. Fed. Proc, 24, 1000

    PubMed  CAS  Google Scholar 

  3. Crane, R. K., Forstner, G. and Eichholz, A. (1965). Studies on the mechanism of intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. Biophys. Acta, 109, 467

    Article  PubMed  CAS  Google Scholar 

  4. Alvarado, F. (1965). The relationship between Na+ and the active transport of arbutin in the small intestine. Biochim. Biophys. Acta, 109, 478

    Article  PubMed  CAS  Google Scholar 

  5. Wilbrandt, W. and Rosenberg, T. (1961). The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Revs., 13, 109

    CAS  Google Scholar 

  6. Alvarado, F. and Mahmood, A. (1974). Cotransport of organic solutes and sodium ions in the small intestine: A general model. Amino acid transport. Biochemistry, 13, 2882

    Article  PubMed  CAS  Google Scholar 

  7. Alvarado, F. (1970). La membrana celular como mosaico de funciones. Bol. R. Soc. Esp. Hist. Nat., Biol., 68, 33

    Google Scholar 

  8. Curran, P. F. and Schultz, S. G. (1968). Transport across membranes: general principles. In C. F. Code (ed.). Handbook of Physiology. Alimentary Canal. Sect. 6, vol. III, p. 1217 (Washington, D.C.: Amer. Physiological Soc.)

    Google Scholar 

  9. Glynn, I. M. and Karlish, S. J. D. (1975). The sodium pump. Ann. Rev. Physiol., 37, 13

    Article  CAS  Google Scholar 

  10. Kimmich, G. A. (1970). Active sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport. Biochemistry, 9, 3669

    Article  PubMed  CAS  Google Scholar 

  11. Kimmich, G. A. (1973). Coupling between Na+ and sugar transport in small intestine. Biochim. Biophys. Acta, 300, 31

    PubMed  CAS  Google Scholar 

  12. Heinz, E. (1972). Na-linked Transport of Organic Solutes. (Berlin: Springer-Verlag)

    Google Scholar 

  13. Heinz, E. (1974). Coupling and energy transfer in active amino acid transport. In F. Bronner and A. Kleinzeller (eds.). Current Topics in Membranes and Transport, Vol. 5, p. 137 (New York: Academic Press)

    Google Scholar 

  14. Bihler, I. and Cybulsky, R. (1973). Sugar transport at the basal and lateral aspect of the small intestinal cell. Biochim. Biophys. Acta, 298, 429

    Article  PubMed  CAS  Google Scholar 

  15. Gall, D. G., Butler, D. G., Tepperman, F. and Hamilton, J. R. (1974). Sodium ion transport in isolated intestinal epithelial cells. The effect of actively transported sugars on sodium ion efflux. Biochim. Biophys. Acta, 339, 291

    Article  PubMed  CAS  Google Scholar 

  16. Hopfer, U., Nelson, K., Perrotto, J. and Isselbacher, K. J. (1973). Glucose transport in isolated brush-border membrane from rat small intestine. J. Biol. Chem., 248, 25

    PubMed  CAS  Google Scholar 

  17. Murer, H. and Hopfer, U. (1974). Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush-border membranes. Proc. Nat. Acad. Sci. USA, 71, 484

    Article  PubMed  CAS  Google Scholar 

  18. Schultz, S. G. and Curran, P. F. (1970). Coupled transport of sodium and organic solutes. Physiol. Revs., 50, 637

    CAS  Google Scholar 

  19. Saunders, S. J. and Isselbacher, K. J. (1965). Inhibition of intestinal amino acid transport by hexoses. Biochim. Biophys. Acta, 102, 397

    Article  PubMed  CAS  Google Scholar 

  20. Crane, R. K., and Mandelstam, P. (1960). The active transport of sugars by various preparations of hamster intestine. Biochim. Biophys. Acta, 45, 460

    Article  PubMed  CAS  Google Scholar 

  21. Alvarado, F. (1966). Transport of sugars and amino acids in the intestine: evidence for a common carrier. Science, 151, 1010

    Article  PubMed  CAS  Google Scholar 

  22. Alvarado, F. (1971). Interrelation of transport systems for sugars and amino acids in small intestine. In W. McD. Armstrong and A. S. Nunn (eds.). Intestinal Transport of Electrolytes, Amino Acids and Sugars, p. 281 (Springfield: Ch. C. Thomas)

    Google Scholar 

  23. Alvarado, F. (1972). Sodium activation of intestinal sugar and amino acid transport: A general or an individual effect? In E. Heinz (ed.). Na-linked Transport of Organic Solutes, p. 147. (Berlin: Springer-Verlag)

    Chapter  Google Scholar 

  24. Robinson, J. W. L. and Alvarado, F. (1971). Interaction between the sugar and amino acid transport systems at the small intestinal brush borders: a comparative study. Pflugers Arch-Europ. J. Physiol., 326, 48

    Article  CAS  Google Scholar 

  25. Alvarado, F. and Mahmood, A. (19**). Cotransport of organic solutes and sodium ions in the small intestine: A general model. II. Sugar transport. (In preparation)

    Google Scholar 

  26. Vidaver, G. A., (1964). Some tests of the hypothesis that the sodium ion gradient furnishes the energy for glycine active transport by pigeon red cells. Biochemistry, 3, 803

    Article  PubMed  CAS  Google Scholar 

  27. Crane, R. K. (1964). Uphill outflow of sugar from intestinal epithelial cells induced by reversal of the Na+ gradient: Its significance for the mechanism of Na+-dependent active transport. Biochem. Biophys. Res. Commun., 17, 481

    Article  CAS  Google Scholar 

  28. Robinson, J. W. L. (1974). The question of countertransport in the intestine. Biochim. Biophys. Acta, 367, 88

    Article  PubMed  CAS  Google Scholar 

  29. Alvarado, F. and Monreal, J. (1967). Na+-dependent transport of phenylglucosides in the chicken small intestine. Comp. Biochem. Physiol., 20, 471

    Article  PubMed  CAS  Google Scholar 

  30. Finch, L. R. (1962). Non-reversibility in the uptake of amino acids by isolated segments of rat intestine. Biochim. Biophys. Acta, 64, 556

    Article  PubMed  CAS  Google Scholar 

  31. Christensen, H. N., Feldman, B. H. and Hastings, A. B. (1963). Concentrative and reversible character of intestinal amino acid transport. Amer. J. Physiol., 205, 255

    PubMed  CAS  Google Scholar 

  32. Alvarado, F. and Crane, R. K. (1962). Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine in vitro. Biochim. Biophys. Acta, 56

    Article  PubMed  CAS  Google Scholar 

  33. Wilson, T. H. (1962). Intestinal absorption, p. 2 (Philadelphia: W. B. Saunders).

    Google Scholar 

  34. McDougal, D. B., Little, K. S. and Crane, R. K. (1960). Studies on the mechanism of intestinal absorption of sugars. IV. Localization of galactose concentrations within the intestinal wall during active transport. Biochim. Biophys. Acta, 45, 483

    Article  PubMed  CAS  Google Scholar 

  35. Kinter, W. B. and Wilson, T. H. (1965). Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. J. Cell Biol., 25, 19

    Article  PubMed  CAS  Google Scholar 

  36. Crane, R. K. and Wilson, T. H. (1958). In vitro method for the study of the rate of intestinal absorption of sugars. J. Appl. Physiol., 12, 145

    PubMed  CAS  Google Scholar 

  37. Winne, D. (1973). Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta, 298, 27

    Article  PubMed  CAS  Google Scholar 

  38. Dugas, M. C., Ramaswamy, K. and Crane, R. K. (1975). Analysis of the D-glucose influx kinetics of in vitro hamster jejunum, based on considerations of the mass-transfer coefficient. Biochim. Biophys. Acta, 382, 576

    Article  PubMed  CAS  Google Scholar 

  39. Ito, S. (1956). The enteric surface coat on cat intestinal microvilli. J. Cell Biol., 27, 475

    Article  Google Scholar 

  40. Schultz, S. G., Frizzell, R. A. and Nellans, H. N. (1974). Ion transport by mammalian small intestine. Ann. Rev. Physiol., 36, 51

    Article  CAS  Google Scholar 

  41. Saltzman, D. A., Rector, F. C. and Fordtran, J. S. (1972). The role of intraluminal sodium in glucose absorption in vivo. J. Clin. Invest., 51, 876

    Article  PubMed  CAS  Google Scholar 

  42. Candia, O. A. and Chiarandini, D. J. (1973). Transport of lithium and rectification by frog skin. Biochim. Biophys. Acta, 307, 578

    Article  PubMed  CAS  Google Scholar 

  43. Candia, O. A. and Reinach, P. (1975). The Na pool and Na fluxes across inner and outer barriers of frog skin epithelium. Biophys. J., 15, 228a

    Google Scholar 

  44. Crane, R. K. (1966). Structural and functional organization of an epithelial cell brush border. In K. B. Warren (ed.). Intracellular Transport, p. 71. (New York: Academic Press)

    Google Scholar 

  45. Mahmood, A. and Alvarado, F. (1975). The activation of intestinal brush-border sucrase by alkali metal ions: An allosteric mechanism similar to that for the Na+-activation of non-electrolyte transport systems in intestines. Arch. Biochem. Biophys., 168, 585

    Article  PubMed  CAS  Google Scholar 

  46. Lee, C. O. and Armstrong, W. McD. (1972). Activities of sodium and potassium ions in epithelial cells of small intestine. Science, 175, 1261

    Article  PubMed  CAS  Google Scholar 

  47. Robinson, J. W. L. (1970). Comparative aspects of the response of the intestine to its ionic environment. Comp. Biochem. Physiol., 34, 641

    Article  PubMed  CAS  Google Scholar 

  48. Krebs, H. A. and Henseleit, K. (1932). Untersuchungen über die Harnstoffbildung im Tierkdörper. Z. Physiol., ehem. 210, 33

    Article  CAS  Google Scholar 

  49. Malathi P., Ramaswamy, K., Caspary, W. F. and Crane, R. K. (1973). Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a di-saccharidase-related transport system. Biochim. Biophys. Acta, 307, 613

    Article  PubMed  CAS  Google Scholar 

  50. Ramaswamy, K., Malathi, P., Caspary, W. F. and Crane, R. K. (1964). Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system. Biochim. Biophys. Acta, 345, 39

    Google Scholar 

  51. Caspary, W. F. (1972). Evidence for a sodium-independent transport system to glucose derived from disaccharides. In E. Heinz (ed.). Na-linked Transport of Organic Solutes, p. 99 (Berlin, Heidelberg, New York: Springer-Verlag)

    Chapter  Google Scholar 

  52. Parsons, D. S. and Prichard, J. S. (1971). Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestines. J. Physiol. Lond., 212, 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 MTP Press Ltd

About this chapter

Cite this chapter

Alvarado, F. (1976). Sodium-Driven Transport A Re-evaluation of the Sodium-Gradient Hypothesis. In: Robinson, J.W.L. (eds) Intestinal Ion Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6156-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6156-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6158-9

  • Online ISBN: 978-94-011-6156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics