Skip to main content

Polarity of Epithelial Cells in Relation to Transepithelial Transport in Kidney and Intestine

  • Chapter
Intestinal Ion Transport

Abstract

Epithelia are characterized by a morphological polarity of their cells. This polarity consists mainly of a different arrangement of the plasma membranes at the two cell poles. In the renal proximal tubule and in the small intestine, the apical plasma membrane or brush border is composed of numerous microvilli. At the basal pole of the cell, interdigitations of the cell occur to form the basal infoldings, which are more pronounced in the proximal tubule than in the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CF-CCP:

Carbonly cyanide p-fluoromethoxy-phenylhydrazone

HEPES:

N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid

Tris:

Tris(hydroxymethyl)aminomethane

MES:

2(N-morpholino)-ethane-sulphonic acid

References

  1. Fdörster, H. and Hoos, I. (1972). The excretion of sodium during absorption of glucose from the perfused small intestine of rats. Hoppe-Seylers Z. Physiol. Chem., 353, 88

    Article  Google Scholar 

  2. Saltzman, D. A., Rector, F. C. and Fordtran, J. S. (1972). The role of intraluminal sodium in glucose absorption in vivo. J. Clin. Invest., 51, 876

    Article  PubMed  CAS  Google Scholar 

  3. Crane, R. K. (1965). Na+ dependent transport in the intestine and other animal tissues. Fed. Proc., 24, 1000

    PubMed  CAS  Google Scholar 

  4. Crane, R. K. (1968). Absorption of sugars. Handbook of Physiology, vol. 3 (Sect. 6), 1323

    CAS  Google Scholar 

  5. Smyth, D. H. (1971). Sodium-hexose interactions. Phil. Trans. Roy. Soc. Lond. B, 262, 121

    Article  CAS  Google Scholar 

  6. Bihler, I. and Cybulsky, R. (1973). Sugar transport at the basal and lateral aspect of the small intestinal epithelial cell. Biochim. Biophys. Acta, 298, 429

    Article  PubMed  CAS  Google Scholar 

  7. Ullrich, K. J., Rumrich, G. and Kldöss, S. (1974). Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch., 351, 35

    Article  PubMed  CAS  Google Scholar 

  8. Ullrich, K. J., Rumrich, G. and Kldöss, S. (1974). Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney, Pflügers Arch., 351, 49

    Article  PubMed  CAS  Google Scholar 

  9. Burg, M. B. and Orloff, J. (1973). Perfusion of isolated renal tubules. Handbook of Physiology, Renal physiology, 145

    Google Scholar 

  10. Silverman, M., Aganon, M. A. and Chinard, F. P. (1970). D-glucose interactions with renal tubule cell surfaces. Amer. J. Physiol., 218, 735

    PubMed  CAS  Google Scholar 

  11. Foulkes, E. C. and Gieske, T. (1973). Specificity and metal sensitivity of renal amino acid transport. Biochim. Biophys. Acta, 318, 439

    Article  CAS  Google Scholar 

  12. Silverman, M. (1974). The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim. Biophys. Acta, 332, 248

    Article  CAS  Google Scholar 

  13. Kleinzeller, A. and McAvoy, E. M. (1973). Sugar transport across the peritubular face of renal cells of the flounder. J. Gen. Physiol., 62, 169

    Article  PubMed  CAS  Google Scholar 

  14. Csaky, T. Z. (1963). A possible link between active transport of electrolytes and non-electrolytes. Fed. Proc., 22, 3

    CAS  Google Scholar 

  15. Tucker, A. and Kimmich, G. A. (1973). Characteristics of amino acid accumulation by isolated intestinal epithelial cells. J. Membrane Biol., 12, 1

    Article  CAS  Google Scholar 

  16. Miller, D. and Crane, R. K. (1961). The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim. Biophys. Acta, 52, 293

    Article  PubMed  CAS  Google Scholar 

  17. Binkley, F., King, N., Milikin, E., Wright, R. K., Neal, C. H. and Wundram, I. J. (1968). Brush border particulates of renal tissue. Science, 162, 1009

    Article  PubMed  CAS  Google Scholar 

  18. Kinne, R. and Kinne-Saffran, E. (1969). Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Pflügers Arch., 308, 1

    Article  PubMed  CAS  Google Scholar 

  19. Berger, S. J. and Sacktor, B. (1970). Isolation and biochemical characterization of brush borders from rabbit kidney. J. Cell. Biol., 47, 637

    Article  PubMed  CAS  Google Scholar 

  20. Wilfong, R. F. and Neville, D. M., Jr. (1970). The isolation of a brush border membrane fraction from rat kidney. J. Biol. Chem., 245, 6106

    PubMed  CAS  Google Scholar 

  21. Stevenson, F. K. (1972). The disaccharidase activity of a membrane fraction obtained from rabbit renal cortex. Biochim. Biophys. Acta, 266, 144

    Article  PubMed  CAS  Google Scholar 

  22. Quirk, S. J. and Robinson, G. B. (1972). Isolation and characterization of rabbit kidney brush borders. Biochem. J., 128, 1319

    PubMed  CAS  Google Scholar 

  23. Chertok, R. J. and Lake, S. (1972). A simple method for the preparation of renal brush borders. J. Cell Biol., 54, 426

    PubMed  CAS  Google Scholar 

  24. George, S. G. and Kenny, A. J. (1973). Studies on the enzymoiogy of purified preparations of brush border from rabbit kidney. Biochem. J., 134, 43

    PubMed  CAS  Google Scholar 

  25. Heidrich, H. G., Kinne, R., Kinne-Saffran, E. and Hannig, K. (1972). The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J. Cell. Biol. 54, 232

    Article  PubMed  CAS  Google Scholar 

  26. Eichholz, A. (1967). Structural and functional organisation of the brush border of intestinal epithelial cells. III. Enzymatic activities and chemical composition of various fractions of Tris-disrupted brush borders. Biochim. Biophys. Acta, 135, 475

    Article  PubMed  CAS  Google Scholar 

  27. Quigley, J. D. and Gotterer, G. S. (1969). Distribution of Na+-K+-ATPase activity in rat intestinal mucosa. Biochim. Biophys. Acta, 173, 456

    Article  PubMed  CAS  Google Scholar 

  28. Fujita, M., Matsui, H., Nagano, K. and Nakao, M. (1972). Differential isolation of microvillus and basolateral membranes from intestinal mucosa. Biochim. Biophys. Acta, 274, 336

    Article  PubMed  CAS  Google Scholar 

  29. Hopfer, U., Nelson, K., Perrotto, J. and Isselbacher, K. J. (1973). Glucose transport in isolated brush border membranes from rat small intestine. J. Biol. Chem., 248, 25

    PubMed  CAS  Google Scholar 

  30. Murer, H., Hopfer, U., Kinne-Saffran, E. and Kinne, R. (1974). Glucose transport in isolated brush border and lateral-basal plasma membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta, 345, 170

    Article  PubMed  CAS  Google Scholar 

  31. Murer, H., Ammans, E., Biber, J. and Hopfer, U. (1975). The surface membrane of the small intestinal epithelial cell. I. Localisation of adenylcyclase. (Submitted for publication)

    Google Scholar 

  32. Marx, S. J., Fedak, S. A. and Aurbach, G. D. (1972). Preparation and characterization of a hormone responsive renal plasma membrane fraction. J. Biol. Chem., 247, 6913

    PubMed  CAS  Google Scholar 

  33. Manitius, A., Bensch, K. and Epstein, F. H. (1968). (Na+ + Reactivated ATPase in kidney cell membranes of normal and methylprednisolone-treated rats. Biochim. Biophys. Acta, 150, 563

    Article  PubMed  CAS  Google Scholar 

  34. Ebel, H., Gebhardt, A. and Aulbert, E. (1975). Protein composition of rat kidney basal lateral membranes. Pflügers Arch., 355, R 51

    Google Scholar 

  35. Douglas, A., Kerley, R. and Isselbacher, K. J. (1972). Preparation and characterization of the lateral and basal plasma membranes of the rat intestinal epithelial cell. Biochem. J., 128, 1329

    PubMed  CAS  Google Scholar 

  36. Schmidt, U. and Dubach, U. C. (1971). Na+-K+ stimulated adenosine triphosphatase: Intracellular localization within the proximal tubule of the rat nephron. Pflügers. Arch., 330, 265

    Article  PubMed  CAS  Google Scholar 

  37. Stirling, C. E. (1972). Radioautographic localization of sodium pump sites in rabbit intestine. J. Cell Biol., 53, 704

    Article  PubMed  CAS  Google Scholar 

  38. Kinne, R., Schmitz, J. E. and Kinne-Saffran, E. (1971). The localization of the Na+-K+-ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Pflügers Arch., 329, 191

    Article  PubMed  CAS  Google Scholar 

  39. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M. and Sachs, G. (1975). Sugar transport by renal plasma membrane vesicles: Characterization of the systems in the brush border microvilli and the basal-lateral plasma membranes. J. Membrane Biol., 21, 375

    Article  CAS  Google Scholar 

  40. Sigrist-Nelson, K., Ammans, E., Murer, H. and Hopfer, U. (1975). The surface membrane of the small intestinal epithelial cell. II. Non-electrolyte transport. (Submitted for publication)

    Google Scholar 

  41. Sigrist-Nelson, K. (1975). Hexose and amino acid transport in isolated plasma membranes from small intestinal epithelial cells. Thesis, ETH-Zürich (Schweiz)

    Google Scholar 

  42. Sigrist-Nelson, K., Murer, H. and Hopfer, U. (1975). Active alanine transport in isolated brush border membranes. J. Biol Chem., 250, 5674

    PubMed  CAS  Google Scholar 

  43. Evers, J., Thees, M. and Kinne, R. (1975). Phenylalanine transport by brush border microvilli vesicles isolated from rat kidney cortex. (Submitted for publication)

    Google Scholar 

  44. Segal, S. and Rosenhagen, M. (1974). The effect of extracellular sodium concentration on a-methyl-D-glucoside transport by rat kidney cortex slices. Biochim. Biophys. Acta, 332, 278

    Article  CAS  Google Scholar 

  45. Murer, H. and Hopfer, U. (1974). Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. Nat. Acad. Sci. (USA), 71, 484

    Article  CAS  Google Scholar 

  46. Schultz, S. G. and Curran, P. F. (1970). Coupled transport of sodium and organic solutes. Physiol. Rev., 50, 637

    PubMed  CAS  Google Scholar 

  47. Henderson, P. J. F., McGivan, J. D. and Chappell, J. B. (1969). The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem. J., 111, 521

    PubMed  CAS  Google Scholar 

  48. Rose, R. C. and Schultz, S. G. (1971). Studies on the electrical potential profile across rabbit ileum. J. Gen. Physiol., 57, 639

    Article  PubMed  CAS  Google Scholar 

  49. Rose, R. C. and Schultz, S. G. (1970). Alanine and glucose effects on the intracellular electrical potential of rabbit ileum. Biochim. Biophys. Acta, 211, 376

    Article  CAS  Google Scholar 

  50. Wright, E. M. (1966). The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J. Physiol. Lond., 185, 486

    PubMed  CAS  Google Scholar 

  51. White, J. F. and Armstrong, W. McD. (1971). Effect of transported solutes on membrane potentials in bullfrog small intestine. Amer. J. Physiol., 221, 194

    PubMed  CAS  Google Scholar 

  52. Lyon, I. and Sheering, H. E. (1971). Studies on transmural potentials in vitro in relation to intestinal absorption. VI. The effect of sugars and amino acids on electrical potential profiles in jejunum and ileum. Biochim. Biophys. Acta, 249, 1

    Article  PubMed  CAS  Google Scholar 

  53. Barry, R. J. C. and Eggenton, J. (1972). Membrane potentials of epithelial cells in rat small intestine. J. Physiol. Lond., 227, 201

    PubMed  CAS  Google Scholar 

  54. Kokko, J. P. (1972). Proximal tubule potential difference: dependence on glucose, HCO3 - and amino acids. Clin. Res., 20, 598

    Google Scholar 

  55. Maruyama, T. and Hoshi, T. (1972). The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta, 282, 214

    Article  PubMed  CAS  Google Scholar 

  56. Frömter, E. and Gessner, K. (1974). Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch., 351, 85

    Article  PubMed  Google Scholar 

  57. LeFevre, P. G. (1961). Sugar transport in the red blood cell: structure activity relationship in substrates and antagonists. Pharmacol. Rev., 13. 39

    PubMed  CAS  Google Scholar 

  58. Murer, H., Sigrist-Nelson, K. and Hopfer, U. (1975). On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol Chem. (In press)

    Google Scholar 

  59. Hoffmann, N., Thees, M. and Kinne, R. (1975). Transport of inorganic phosphate by isolated renal plasma membrane vesicles. (In preparation)

    Google Scholar 

  60. Murer, H., Hopfer, U. and Kinne, R. (1975). Sodium-proton antiport in brush border membrane vesicles isolated from rat small intestine and rat kidney. (Submitted for publication)

    Google Scholar 

  61. Ebel, H., Aulbert, E., and Merker, H. J. (19**). Isolation of the basal and lateral plasma membranes of rat kidney tubule cells. (In preparation)

    Google Scholar 

  62. Glossmann, H. and Neville, D. M. (1971). Plasma membrane protein subunit composition. A comparative study by discontinuous electrophoresis in sodium dodecyl sulfate. J. Biol. Chem., 246, 6339

    PubMed  CAS  Google Scholar 

  63. Fujita, M., Kawai, K., Asano, S., and Nakao, M. (1973). Protein components of two different regions of an intestinal epithelial cell membrane. Regional singularities. Biochim. Biophys. Acta, 307, 141

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 MTP Press Ltd

About this chapter

Cite this chapter

Kinne, R., Murer, H. (1976). Polarity of Epithelial Cells in Relation to Transepithelial Transport in Kidney and Intestine. In: Robinson, J.W.L. (eds) Intestinal Ion Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6156-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6156-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6158-9

  • Online ISBN: 978-94-011-6156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics