Skip to main content

Pathway of Sodium Moving from Blood to Intestinal Lumen under Influence of Oxyphenisatin and Deoxycholate

  • Chapter
Intestinal Ion Transport

Abstract

Laxatives of the diphenolic type and dihydroxy bile acids do not only inhibit the absorption of water and sodium from the intestine but cause a net transfer of fluid and electrolytes into the intestinal lumen. This was shown by Forth et al.1,2 for the rat colon and by Mekhjian et al. 3for the human colon using bile acids. Ewe and Hdölker4 confirmed these results with respect to bisacodyl, a diphenolic laxative, in the human colon. The transferred fluid contains sodium and chloride at the same concentrations as blood plasma3,5,6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forth, W., Rummel, W. and Baldauf, J. (1966). Wasser-und Elektrolytbewegung am Dünn-und Dickdarm unter dem Einfluss von Laxantien, ein Beitrag zur Klärung ihres Wirkungsmechanismus. Nauny-Schmiedebergs Arch. Pharmak. Exp. Path., 254, 18

    Article  CAS  Google Scholar 

  2. Forth, W., Rummel, W. and Glasner, H. (1966). Zur resorptionshemmenden Wirkung von Gallensäuren. Naunyn-Schmiedebergs Arch. Pharmak. Exp. Path., 254, 363

    Google Scholar 

  3. Mekhjian, H. S., Phillips, S. F. and Hoffmann, A. F. (1971). Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J. Clin. Invest., 50, 1569

    Article  CAS  Google Scholar 

  4. Ewe, K. and Hdölker, B. (1974). Einfluss eines diphenolischen Laxans (Bisacodyl) auf den Wasser-und Elektrolyttransport im menschlichen Colon. Klin. Wschr., 52, 827

    Article  PubMed  CAS  Google Scholar 

  5. Overhoff, H., Forth, W., Nell, G., Pfleger, K. and Rummel, W. (1970). Zur Klärung der Ursachen des durch Oxypheniatin bedingten Nettotransfers von Wasser und Na+ am Colon der Ratte. Naunyn-Schmiedebergs Arch. Pharmak., 266, 419

    Article  CAS  Google Scholar 

  6. Nell, G., Overhoff, H., Forth, W. and Rummel, W. (1973). The influence of water gradients and oxyphenisatin on the net transfer of sodium and water in the rat colon. Naunyn-Schmiedebergs Arch, Pharmak., 277, 363

    Article  CAS  Google Scholar 

  7. Nell, G., Overhoff, H., Forth, W., Kulenkampff, H., Specht, W. and Rummel, W. (1973). Influx and efflux of sodium in jejunal and colonic segments of rats under the influence of oxyphenisatin. Naunyn-Schmiedebergs Arch. Pharmak., 277, 53

    Article  CAS  Google Scholar 

  8. Wanitschke, R., Nell, G. and Rummel, W. (1975). Influence of deoxycholate and oxyphenisatin on the movement of water and sodium in rat colon. (In preparation)

    Google Scholar 

  9. Schultz, S. G., Frizzell, R. A. and Nellans, H. N. (1974). Ion transport by mammalian small intestine. Ann. Rev. Physiol., 36, 51

    Article  CAS  Google Scholar 

  10. Nell, G., Forth, W., Rummel, W. and Wanitschke, R. (1975). Pathway of sodium moving from blood to intestinal lumen under the influence of oxyphenisatin and deoxycholate. (In preparation)

    Google Scholar 

  11. Freiberger, T. (1975). Der Einfluss von Desoxycholsäure auf die Permeabilität des Colons der Ratte in vivo. Thesis, Medizinische Fakultät der Universität des Saarlandes. (In preparation)

    Google Scholar 

  12. Nell, G., Forth, W., Rummel, W. and Wanitschke, R. (1972). Abolition of the apparent Na+impermeability of the colon mucosa by deoxycholate. In: Bile acids in human diseases. Second Bile Acid Meeting, p. 263 (Stuttgart, New York: F. K. Schattauer Verlag)

    Google Scholar 

  13. Binder, H. J. and Rawlins, C. L. (1973). Effect of conjugated dihydroxy bile salts on electrolyte transport in rat colon. J. Clin. Invest., 52, 1460

    Article  PubMed  CAS  Google Scholar 

  14. Specht, W., Nell, G., Rummel, W. and Wanitschke, R. (Unpublished results)

    Google Scholar 

  15. Soergel, K. H., Nell, G., Rummel, W. and Wanitschke, R. (Unpublished results)

    Google Scholar 

  16. Rummel, W., Nell, G. and Wanitschke, R. (1975). Action mechanism of antiabsorptive and hydragogue drugs. In: T. Z. Csäky (ed.). Intestinal Absorption and Malabsorption, p. 209 (New York: Raven Press)

    Google Scholar 

  17. Phillips, S. F. (1972). Diarrhea: a current view of the pathophysiology. Gastroenterology, 63, 495

    PubMed  CAS  Google Scholar 

  18. Visscher, M. B., Fetcher, E. S., Carr, C. W., Gregor, H. P., Bushey, M. S. and Barker, D. E. (1944). Isotopic trace studies on the movement of water and ions between intestinal lumen and blood. Amer. J. Physiol., 144, 457

    Google Scholar 

  19. Fisher, R. B. and Parsons, D. S. (1949). Glucose absorption from surviving rat small intestine. J. Physiol. Lond., 110, 281.

    PubMed  CAS  Google Scholar 

  20. Newey, H., Smyth, D. H. and Whalen, B. C. (1955). The absorption of glucose by the in vitro intestinal preparation. J. Physiol Lond., 129, 1

    PubMed  CAS  Google Scholar 

  21. Curran, P. F. (1960). Na, Cl, and water transport by rat ileum in vitro. J. Gen. Physiol., 42, 1137

    Article  Google Scholar 

  22. Diamond, J. M. (1971). Standing gradient model of fluid transport in epithelia. Fed. Proc, 30, 6

    PubMed  CAS  Google Scholar 

  23. Parsons, D. S. and Wingate, D. L. (1961). The effect of osmotic gradients of fluid transfer across rat intestine in vitro. Biochim. Biophys. Acta, 46, 170

    Article  PubMed  CAS  Google Scholar 

  24. Reid, E. W. (1892). Preliminary report on experiments upon intestinal absorption without osmosis. Brit. Med. J., i, 1133

    Article  Google Scholar 

  25. Parsons, D. S. (1968). Methods for investigation of intestinal absorption. In: Handbook of Physiology, sect. 6, Alimentary Canal, C. F. Code (ed.), vol. III: Intestinal Absorption, chap. 64. p. 1177 (Washington DC: American Physiol. Society)

    Google Scholar 

  26. Lee, J. S. and Silverberg, J. W. (1972). Effect of cholera toxin on fluid absorption and villus lymph pressure in dog jejunal mucosa. Gastroenterology, 62, 993

    PubMed  CAS  Google Scholar 

  27. Forth, W., Rummel, W. and Glasner, H. (1966). Zur resorptionshemmenden Wirkung von Gallensauren. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak., 254, 364

    Article  CAS  Google Scholar 

  28. Wingate, D. L., Phillips, S. F. and Hofmann, A. F. (1973). Effect of glycine-conjugated bile acids with and without lecithin on water and glucose absorption in perfused human jejunum. J. Clin. Invest., 52, 1230

    Article  PubMed  CAS  Google Scholar 

  29. Turnberg, L. A., Fordtran, J. S., Carter, N. W. and Rector, F. C.(1970). Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J. Clin. Invest., 49, 548

    Article  PubMed  CAS  Google Scholar 

  30. Wingate, D. L., Krag, E., Mekhjian, H. S. and Phillips, S. F., (1973). Relationships between ior and water movement in the human jejunum, ileum, and colon during perfusion with bile acids. Clin. Sci. Mol. Med., 45, 593

    PubMed  CAS  Google Scholar 

  31. Wingate, D. L. (1974). The effect of glycine-conjugated bile acids on net transport and potential difference across isolated rat jejunum and ileum. J. Physiol., Lond., 242, 189

    PubMed  CAS  Google Scholar 

  32. Krag, E., and Phillips, S. F. (1973). Bile acids in human ileum: effect on water, electrolyte, glucose, and bile acid absorption. (Abstract) Gastroenterology, 64, 756

    Google Scholar 

  33. Wilson, T. H. (1954). Concentration gradients of lactate, hydrogen, and some other ions across the intestine in vitro. Biochem. J., 56, 512

    Google Scholar 

  34. Diamond, J. M. (1974). Tight and leaky junctions of epithelia; a perspective on kisses in the dark. Fed. Proc, 33, 2220

    PubMed  CAS  Google Scholar 

  35. Binder, H. J. and Rawlins, C. L. (1973). Effect of conjugated dihydroxy bile salts on electrolyte transport in rat colon. J. Clin. Invest., 52, 1460

    Article  PubMed  CAS  Google Scholar 

  36. Binder, H. J., Filburn, C. and Volpe, B. T. (1975). Bile salt alteration of colonic electrolyte transport: Role of cyclic adenosine monophosphate. Gastroenterology, 68, 503 (4) TCDC increases mucosal cyclic AMP levels.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 MTP Press Ltd

About this chapter

Cite this chapter

Nell, G., Forth, W., Rummel, W., Wanitschke, R. (1976). Pathway of Sodium Moving from Blood to Intestinal Lumen under Influence of Oxyphenisatin and Deoxycholate. In: Robinson, J.W.L. (eds) Intestinal Ion Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6156-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6156-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6158-9

  • Online ISBN: 978-94-011-6156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics