Skip to main content

Abstract

Primary amines can be identified by the presence of two absorption bands in the NH stretching region arising from the symmetric and asymmetric vibrations of the hydrogen atoms. In some cases a third band is shown in this region due to hydrogen bonding effects. Hydrogen bonding results in a shift towards lower frequencies in all cases, but the bonds are considerably weaker than those of OH groups, so that the bands are sharper and are not shifted to anything like the same extent. Unfortunately there is a good deal of overlapping between the OH and NH vibrations in this region, so that differentiation is not always possible. Frequency shifts of the NH stretching vibration occur also in structures such as amines and hydrochlorides in which the amine group is charged (NH3 +). These cases are considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Coblentz, Investigations of Infra-red Spectra (Carnegie Institute, 1905).

    Google Scholar 

  2. Bell, J. Amer. Chem. Soc., 1925, 47, 2192.

    Google Scholar 

  3. Idem, ibid., p. 3039.

    Google Scholar 

  4. Idem, ibid., 1926,48, 813.

    Google Scholar 

  5. Idem, ibid., p. 818.

    Google Scholar 

  6. Ellis, J. Amer. Chem. Soc., 1927, 49, 347.

    Article  Google Scholar 

  7. Idem, ibid., 1928, 50,685.

    Google Scholar 

  8. Cleaves and Plyler, J. Chem. Phys., 1939, 7, 563.

    Article  Google Scholar 

  9. Bailey, Carson and Daly,Proc. Roy. Soc., 1939, A173, 339.

    Google Scholar 

  10. Buswell, Downing and Rodebush, J. Amer. Chem. Soc., 1939, 61, 3252.

    Article  Google Scholar 

  11. Gordy, ibid., 1937, 59,464.

    Google Scholar 

  12. Williams, Hofstadter and Herman, J. Chem. Phys., 1939, 7, 802.

    Article  Google Scholar 

  13. Fuson, Josien, Powell and Utterback, ibid., 1952, 20, 145.

    Google Scholar 

  14. Segal, App. Spectroscopy, 1961, 15, 112, 148.

    Google Scholar 

  15. Baldwin, Spectrochim. Acta, 1962, 18, 1455.

    Google Scholar 

  16. Flett, J. Chem. Soc., 1948, 1441.

    Google Scholar 

  17. Hathway and Flett, Trans. Faraday Soc., 1949, 45, 818.

    Article  Google Scholar 

  18. Giguere and Liu, J. Chem. Phys., 1952, 20, 136.

    Article  Google Scholar 

  19. Stewart, J. Chem. Phys., 1959, 30, 1259.

    Article  Google Scholar 

  20. Kreuger and Thompson, Proc. Roy. Soc., 1959, A250, 22; 1957, A243, 143.

    Google Scholar 

  21. Co It hup, J. Opt. Soc. Amer., 1950, 40, 397.

    Article  Google Scholar 

  22. Lieber, Levering and Patterson, Analyt. Chem., 1951, 23, 1594.

    Article  Google Scholar 

  23. Brownlie, J. Chem. Soc., 1950, 3062.

    Google Scholar 

  24. Short and Thompson, ibid., 1952, 168.

    Google Scholar 

  25. Pauling, The Nature of the Chemical Bond (Oxford University Press, 1950).

    Google Scholar 

  26. Hunter, Price and Martin, Report on the Symposium on the Hydrogen Bond (Institute of Chemistry, 1950).

    Google Scholar 

  27. Gordy, J. Chem. Phys., 1939, 7, 167.

    Article  Google Scholar 

  28. Thompson and Harris, J. Chem. Soc., 1944, 301.

    Google Scholar 

  29. Baker, Davies and Gaunt, ibid., 1949, 24.

    Google Scholar 

  30. Sutherland,Discuss. Faraday Soc., 1950, 9, 274.

    Google Scholar 

  31. Rasmussen and Brattain, J. Amer. Chem. Soc., 1949, 71, 1073.

    Article  Google Scholar 

  32. Cromwell, Miller, Johnson, Frank and Wallace, ibid., p. 3337.

    Google Scholar 

  33. Mason, J. Chem. Soc., 1958, 3619; 1961, 22.

    Google Scholar 

  34. Marion, Ramsay and Jones, J. Amer. Chem. Soc., 1951, 73, 305.

    Article  Google Scholar 

  35. Witkop, ibid., 1950, 72, 614.

    Google Scholar 

  36. Bryson, J. Amer. Chem. Soc., 1960, 82, 4862.

    Article  Google Scholar 

  37. Thompson, Nicholson and Short, Discuss. Faraday Soc., 1950, 9, 222.

    Article  Google Scholar 

  38. Richards and Thompson, J. Chem. Soc., 1947, 1248.

    Google Scholar 

  39. Witkop and Patrick, J. Amer. Chem. Soc., 1951, 73, 713.

    Article  Google Scholar 

  40. Short, J. Chem. Soc., 1952, 4584.

    Google Scholar 

  41. Witkop and Patrick, J. Amer. Chem. Soc., 1951, 73, 1558.

    Article  Google Scholar 

  42. Idem, ibid., p. 2188.

    Google Scholar 

  43. Orville Thomas, Parsons and Ogden, J. Chem. Soc., 1968, 1048.

    Google Scholar 

  44. Barnes, Gore, Stafford and V. Zandt Williams, Analyt. Chem., 1948, 20, 402.

    Article  Google Scholar 

  45. Mirone and Vampiri, Atti accad. Nazi. Lincei Rend. Classe Sci. fis. mat. e. Nat., 1952, 12, 405.

    Google Scholar 

  46. Barcello and Bellanato, Spectrochim. Acta, 1956, 8, 27.

    Article  Google Scholar 

  47. Califano and Moccia, Gazz. Chim., 1956, 86, 1014.

    Google Scholar 

  48. Richtering, Z. Phys. Chem., 1956, 9, 393.

    Article  Google Scholar 

  49. Jones and Moritz, Spectrochim. Acta, 1965, 21, 295.

    Article  Google Scholar 

  50. Angyal and Werner, J. Chem. Soc., 1952, 2911.

    Google Scholar 

  51. Shigorin, Danyushevskii and Goldfarb, Izvest, Akad. Nauk. S.S.S.R. Otdel khimNauk., 1956, 120.

    Google Scholar 

  52. Costa, Blasina and Sartori, Z. Phys. Chem., 1956, 7, 123.

    Article  Google Scholar 

  53. Chatt, Duncanson and Venanzi, J. Chem. Soc., 1955, 4461.

    Google Scholar 

  54. Idem, ibid., 1956, 2712.

    Google Scholar 

  55. Bellamy and Williams, Spectrochim. Acta, 1957, 9, 341.

    Article  Google Scholar 

  56. Vampiri, Gazz. Chim., 1954, 84, 1087.

    Google Scholar 

  57. Shull, Wood, Aston and Rank, J. Chem. Phys., 1954, 22, 1191.

    Article  Google Scholar 

  58. Heacock and Marion, Can. J. Chem., 1956, 34, 1782.

    Article  Google Scholar 

  59. Russell and Thompson, J. Chem. Soc., 1955, 483.

    Google Scholar 

  60. Barr and Haszeldine, ibid., 1955, 4169.

    Google Scholar 

  61. Stammer and Taurin, Spectrochim. Acta, 1967, 19, 1625.

    Article  Google Scholar 

  62. Hunter, Progress in Stereochemistry, Vol. 1 ( Butterworth, London, 1954 ), p. 224.

    Google Scholar 

  63. Josien and Fuson, J. Chem. Phys., 1954, 22, 1169.

    Article  Google Scholar 

  64. Fuson and Josien, J. Phys. Radium, 1954, 15, 652.

    Article  Google Scholar 

  65. Josien and Fuson, J. Chem. Phys., 1954, 22, 1264.

    Google Scholar 

  66. Mirone and Fabbri, Gazz. Chim., 1956, 86, 1079.

    Google Scholar 

  67. Tuomikoski,Mikrochem. Acta, 1955,505.

    Google Scholar 

  68. Idem, J. Phys. Radium, 1955, 16, 347.

    Article  Google Scholar 

  69. Despas, Khaladji and Vergoz, Bull. Soc. Chim. Fr., 1953, 1105.

    Google Scholar 

  70. HadSiand Skrbljak, J. Chem. Soc., 1957, 843.

    Google Scholar 

  71. Had2i, ibid., 847.

    Google Scholar 

  72. Mecke and Mecke, Chem. Ber., 1956, 89, 343.

    Article  Google Scholar 

  73. Mecke, Mecke and Luttinghaus, Zeit. Naturforsch., 1955, 10B, 367.

    Google Scholar 

  74. Salimov and Tatevskii, Doklady Akad. Nauk. S.S.S.R., 1957, 112, 890.

    Google Scholar 

  75. Bagratishvili, ibid., 1954, 96, 753.

    Google Scholar 

  76. Powell and Sheppard, J. Chem. Soc., 1956, 3108.

    Google Scholar 

  77. Duval, Duval and Lecomte, Compt. Rend. Acad. Sci. (Paris), 1947, 224, 1632.

    Google Scholar 

  78. Beattie and Tyrell, J. Chem. Soc., 1956, 2849.

    Google Scholar 

  79. Hill and Rosenberg, J. Chem. Phys., 1956, 24, 1219.

    Article  Google Scholar 

  80. Mizushima, Nakagawa and Quagliano, ibid., 1956, 25, 1367.

    Google Scholar 

  81. Mizushima, Nakagawa and Sweeney, ibid., 1956, 25, 1006.

    Google Scholar 

  82. Svatos, Curran and Quagliano, J. Amer. Chem. Soc., 1955, 77, 6159.

    Google Scholar 

  83. Barrow, Kreuger and Basolo, J. Inorg. Nuclear Chem., 1956, 2, 340.

    Article  Google Scholar 

  84. Bellanato and Barcello, Anales. real Soc. Espan. fis. y. quim. Madrid, 1956, 52B, 469.

    Google Scholar 

  85. Witkop,Experimentia, 1954, 10, 420.

    Google Scholar 

  86. Califano and Moccia, Gazz. Chim., 1957, 87, 58.

    Google Scholar 

  87. Leonard and Gash, J. Amer. Chem. Soc., 1954, 76, 2781.

    Google Scholar 

  88. Mathis, Mathis, Imberlin and Lattes, Spectrochim. Acta, 1974, 30A, 741.

    Google Scholar 

  89. Mathis, Baccar, Kateka Bon, N’Gondo M’Pondo, J. Mol. Structure, 1971, 7, 381.

    Article  Google Scholar 

  90. Mathis, Baccar, Barrens and Mathis, J. Mol. Structure, 1971, 7, 355.

    Article  Google Scholar 

  91. Blair and Gardner, J. Chem. Soc. (C), 1970, 2707.

    Google Scholar 

  92. Hadii, Jan and Ocvirk, Spectrochim. Acta, 1969, 25A, 97.

    Google Scholar 

  93. Kreuger, Nature, 1962, 194, 1077.

    Article  Google Scholar 

  94. Whetsel, Robertson and Krell, Analyt. Chem., 1958, 30, 1598.

    Article  Google Scholar 

  95. Moritz, Spectrochim. Acta, 1960, 16, 1176.

    Article  Google Scholar 

  96. Bellamy and Pace, Spectrochim. Acta, 1972, 28A, 1869.

    Google Scholar 

  97. Perrier, Datin and Lebas, Spectrochim. Acta, 1969, 25A, 169.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 L. J. Bellamy

About this chapter

Cite this chapter

Bellamy, L.J. (1975). Amines and Imines. In: The Infra-red Spectra of Complex Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6017-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6017-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6019-3

  • Online ISBN: 978-94-011-6017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics