Skip to main content

Abstract

Esters have two characteristic absorptions arising from the C=O and C—O— groups. The carbonyl frequency is notably raised above that of normal ketones by the influence of the adjoining oxygen atom, so that differentiation of the two is usually possible. There is, however, a certain amount of overlap between, for example, unsaturated esters in which the CO frequency is lowered, and ketones such as α-halogen-substituted materials in which the CO frequency is raised. It is therefore necessary to take account of the intensity of the CO band, and also of the single bond C—O band which, in esters, is very strong and which can usually be differentiated from the weaker C—C bands of ketones which appear in the same spectral region. A similar enhancement of the carbonyl intensity under the influence of the adjacent oxygen atom also occurs, of course, in acids; but in practice the existence of these in polymeric form in the state in which they are usually examined results in a compensating shift to a lower frequency. There is still some degree of overlapping between the carbonyl frequency ranges of esters and acids, and the C—O stretching bonds also absorb in similar ranges, but, as has been shown (Chapter 10), the identification of acids from the OH region or by salt formation will usually resolve any difficulties, whilst again there are marked intensity differences in the carbonyl absorptions of the two classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Jones Humphries, Herling and Dobriner, J. Amer. Chem. Soc., 1951, 73, 3215.

    Article  Google Scholar 

  2. Thompson and Torkington, J. Chem. Soc., 1945, 640.

    Google Scholar 

  3. Hart well, Richards and Thompson, ibid., 1948, 1436.

    Google Scholar 

  4. Hampton and Newell, Analyt. Chem., 1949, 21, 914.

    Article  Google Scholar 

  5. Anderson and Seyfried, ibid., 1948, 20, 998.

    Google Scholar 

  6. Rasmussen and Brattain, J. Amer. Chem. Soc., 1949, 71, 1073.

    Article  Google Scholar 

  7. Shreve Heether, Knight and Swem, Analyt. Chem., 1950, 22, 1498.

    Article  Google Scholar 

  8. O’Connor Field and Singleton, J. Amer. Oil Chem. Soc., 1951, 28, 154.

    Article  Google Scholar 

  9. Jones, Humphries and Dobriner, J. Amer. Chem. Soc., 1949, 71, 241. 10. Idem, ibid., 1950, 72, 956.

    Google Scholar 

  10. Idem, ibid., 1950, 72, 956.

    Google Scholar 

  11. Jones and Dobriner, Vitamins and Hormones ( N.Y. Academic Press,) 1949, 294.

    Google Scholar 

  12. Renema, Thesis, University of Utrecht, 1972.

    Google Scholar 

  13. Cross and Rolfe, Trans. Faraday Soc., 1951, 47, 354.

    Article  Google Scholar 

  14. Barnes, Gore, Liddel and Williams, Infra-red Spectroscopy (Reinhold, 1944 ).

    Google Scholar 

  15. Grove and Willis, J. Chem. Soc., 1951, 877.

    Google Scholar 

  16. Walsh, Trans. Faraday Soc., 1947, 43, 75.

    Google Scholar 

  17. Randall, Fowler, Fuson and Dangl, Infra-red Determination of Organic Structures (Van Nostrand, 1949 ).

    Google Scholar 

  18. Rasmussen and Brattain, The Chemistry of Penicillin ( Princeton Univ. Press, 1949 ), p. 404.

    Google Scholar 

  19. Whiffen and Thompson, J. Chem. Soc., 1946, 1005.

    Google Scholar 

  20. Richards and Thompson, C.P.S. Reports, 442, 511.

    Google Scholar 

  21. Idem y The Chemistry of Penicillin (Princeton Univ. Press, 1949), p. 386.

    Google Scholar 

  22. Woodward and Kovach, J. Amer. Chem. Soc., 1950, 72, 1019.

    Google Scholar 

  23. Wasserman and Zimmerman, ibid., p. 5787.

    Google Scholar 

  24. Hurd and Kreuz, ibid., p. 5543.

    Google Scholar 

  25. Hauptschein Stokes and Nodiff, ibid., 1952, 74, 4005.

    Google Scholar 

  26. Colthup, J, Opt. Soc. Amer., 1950, 40, 397.

    Article  Google Scholar 

  27. Marion Ramsay and Jones, J. Amer. Chem. Soc., 1951, 73, 305.

    Article  Google Scholar 

  28. Jones, Humphries, Herling and Dobriner, ibid., 1952, 74, 2820.

    Google Scholar 

  29. Josien Lascombe and Vignalou, Compt. Rend. Acad. Sei. Paris, 1960, 250, 4146.

    Google Scholar 

  30. Hunsberger Ketcham and Gutowsky, J. Amer. Chem. Soc., 1952, 79,p. 4839.

    Google Scholar 

  31. Leonard, Gutowsky, Middleton and Peterson, ibid., p. 4070.

    Google Scholar 

  32. Taufen and Murray, ibid., 1945, 67, 754.

    Google Scholar 

  33. Sinclair McKay and Jones, ibid., 1952, 74, 2570.

    Google Scholar 

  34. Sinclair, McKay, Myers and Jones, ibid., 2578.

    Google Scholar 

  35. Stahl and Pessen, ibid., 5487.

    Google Scholar 

  36. Haszeldine, Nature, 1951, 168, 1028.

    Article  Google Scholar 

  37. Husted and Ahlbrecht, J. Amer. Chem. Soc., 1953, 75, 1607.

    Article  Google Scholar 

  38. Rappaport Hauptschein, O’Brien and Filler, ibid., 2695.

    Google Scholar 

  39. Fürst Kuhn, Scotoni and Günthard, Helv. Chim. Acta, 1952, 35, 951.

    Article  Google Scholar 

  40. Dauben Haerger and Freeman, J. Amer. Chem. Soc., 1953, 74, 5206.

    Google Scholar 

  41. Searles Tamres and Barrow, J. Amer. Chem. Soc., 1953, 75, 71.

    Article  Google Scholar 

  42. Jones and Herling, J. Org. Chem., 1954, 19, 1252.

    Article  Google Scholar 

  43. Jones and Sandorfy, Chemical Applications of Spectroscopy ( Interscience, New York ), 1956.

    Google Scholar 

  44. Barrow, J. Chem. Phys., 1953, 21, 2008.

    Google Scholar 

  45. Francis, ibid., 1951, 19,942.

    Google Scholar 

  46. Felton and Orr, J. Chem. Soc., 1955, 2170.

    Google Scholar 

  47. Allan, Meakins and Whiting, ibid., 1874.

    Google Scholar 

  48. Bellamy, ibid., 4221.

    Google Scholar 

  49. Bender, J. Amer. Chem. Soc., 1954, 75, 5986.

    Article  Google Scholar 

  50. Filler, ibid., 1376.

    Google Scholar 

  51. McBee and Christman, ibid., 1955, 77, 755.

    Google Scholar 

  52. Josien and Calas, Compt. Rend. Acad. Sei. (Paris), 1955, 240, 1641.

    Google Scholar 

  53. Bellamy and Williams, J. Chem. Soc., 1957, 4294.

    Google Scholar 

  54. Idem, ibid., 1957, 861.

    Google Scholar 

  55. Hunsberger Lednicer, Gutowsky, Bunker and Tunsoig, J. Amer. Chem. Soc., 1955, 77, 2466.

    Google Scholar 

  56. Bellamy and Beecher, J. Chem. Soc., 1954, 4487.

    Google Scholar 

  57. Wilder and Winston, J. Amer. Chem. Soc., 1955, 76, 5598.

    Article  Google Scholar 

  58. Grundmann and Kober, ibid., 2332.

    Google Scholar 

  59. Brügel Dury, Stengel and Suter, Angew. Chem, 1956, 68, 440.

    Google Scholar 

  60. Brügel Stengal, Reicheneder and Suter, ibid., 441.

    Google Scholar 

  61. Berson, J. Amer. Chem. Soc., 1954, 76, 4975.

    Article  Google Scholar 

  62. Fowler and Smith, J. Opt. Soc. Amer., 1953, 43, 1054.

    Article  Google Scholar 

  63. Russell and Thompson, J. Chem. Soc., 1955, 479.

    Google Scholar 

  64. Rosenkrantz and Skrogstrom, J. Amer. Chem. Soc., 1955, 77, 2237.

    Google Scholar 

  65. Jones and Herling, J. Amer. Chem. Soc., 1956, 78, 1152.

    Article  Google Scholar 

  66. Allsop Cole, White and Willis, J. Chem. Soc., 1956, 4868.

    Google Scholar 

  67. Kendall Hampton, Hausdorff and Pristera, A pp. Spectroscopy, 1953, 179.

    Google Scholar 

  68. Henbest and Loveil, J. Chem. Soc., 1957, 1965.

    Google Scholar 

  69. Laato and Isotalo, Acta Chem. Scand., 1967, 21, 2119.

    Google Scholar 

  70. Katritzky Lagowski and Beard, Spectrochim. Acta, 1960, 16, 964.

    Article  Google Scholar 

  71. Freeman, J. Amer. Chem. Soc., 1958, 80, 5954.

    Article  Google Scholar 

  72. Thompson and Jameson, Spectrochim. Acta, 1958, 13, 236.

    Article  Google Scholar 

  73. Brown, Spectrochim. Acta, 1961, 18, 1615.

    Google Scholar 

  74. Bowles George and Cunliffe Jones, J. Chem. Soc., 1970, 1070.

    Google Scholar 

  75. Brookes Eglington and Morman, J. Chem. Soc., 1961, 661.

    Google Scholar 

  76. Eglington Brookes and Morman, J. Chem. Soc., 1961, 106.

    Google Scholar 

  77. Freedman, J. Amer. Chem. Soc., 1960, 82, 2454.

    Google Scholar 

  78. McManis, App. Spectroscopy, 1970, 24, 495.

    Google Scholar 

  79. Feairhalter and Katon, J. Mol. Structure, 1968, 1, 238.

    Google Scholar 

  80. Bellamy, Advances in Infrared Group Frequencies ( Methuen, London, 1968 ).

    Google Scholar 

  81. Hall and Zbinden, J. Amer. Chem. Soc., 1958, 80, 6428.

    Article  Google Scholar 

  82. Nyquist and Potts, Spectrochim. Acta, 1959, 15, 514.

    Article  Google Scholar 

  83. Baker and Harris, J. Amer. Chem. Soc., 1960, 82, 1923.

    Article  Google Scholar 

  84. Jones Angell, Ito and Smith, Can. J. Chem., 1959, 37, 2007.

    Google Scholar 

  85. Wladislaw Viertler and Demant, J. Chem. Soc. (B), 1971, 565.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 L. J. Bellamy

About this chapter

Cite this chapter

Bellamy, L.J. (1975). Esters and Lactones. In: The Infra-red Spectra of Complex Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6017-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6017-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6019-3

  • Online ISBN: 978-94-011-6017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics