Skip to main content

Structure of peptidoglycan

  • Chapter
Microbial Cell Walls and Membranes

Abstract

The fundamental polymer that is a common component of the cell walls of Grampositive and Gram-negative bacteria, Rickettsiae and blue-green bacteria is called peptidoglycan (formerly mucopeptide or murein). As its name implies, it consists of glycan chains with peptide substituents, and in all examples that have been studied the peptide subunits are cross-linked so that the overall structure is a network that surrounds the cell. This network seems responsible for the integrity of the shape of Gram-positive bacteria, and at least partially of Gram-negative bacteria as well. Certainly when the peptidoglycan is degraded, as for instance by lysozyme, the bacterium tends to lose its characteristic shape and to form a spherical body known as a spheroplast, which usually needs to be maintained in a hypertonic medium if it is not to burst because of the high osmotic pressure within it and the lack of external support. The chemical composition of peptidoglycan has been established over the period since the early 1950s, when Salton [40] first showed that the cell walls prepared from Gram-positive organisms were of a comparatively simple amino acid composition, although both he and Weidel [56] found that the walls of Gramnegative species were more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, A., Petit, J. F., Wietzerbin-Falszpan, J., Sinay, P., Thomas, D. W. and Lederer, E. (1969) FEBS Letts. 4, 87–92.

    Article  Google Scholar 

  2. Araki, Y., Nakatani, T., Nakayama, K. and Ito, E. (1972) J. biol. Chem. 247, 6312–22.

    Google Scholar 

  3. Azuma, I., Thomas, D. W., Adam, A., Ghuysen, J-M., Bonaly, R., Petit, J-F. and Lederer, E. (1970) Biochim. biophys. Acta. 208, 444–51.

    Article  Google Scholar 

  4. Barnickel, G., Labischinski, H., Bradaczek, H. and Giesbrecht, P. (1979) Eur.J. Biochem. 95, 157–65.

    Article  Google Scholar 

  5. Braun, V., Gnirke, H., Henning, U. and Rehn, K. (1973) J.Bact. 114, 1264–70.

    Google Scholar 

  6. Bricas, E., Ghuysen, J-M. and Dezélée, P. (1967) Biochemistry 6, 2598–607.

    Article  Google Scholar 

  7. Brumfitt, W., Wardlaw, A.C. and Park, J. T. (1958) Nature, Lond. 181, 1783–4.

    Article  Google Scholar 

  8. Burge, R. E., Adams, R., Balyuzi, H. H. M. and Reaveley, D. A. (1977) J. molec. Biol. 117, 955–74.

    Article  Google Scholar 

  9. Burge, R. E., Fowler, A. G. and Reaveley, D. A. (1977) J. molec. Biol. 117, 927–53.

    Article  Google Scholar 

  10. Coyette, J. and Ghuysen, J-M. (1970) Biochemistry 9, 2935–43.

    Article  Google Scholar 

  11. Cummins, C. S. and Harris, H. (1956) J. gen. Microbiol 14, 583–600.

    Google Scholar 

  12. Day, A. and White, P. J. (1977) Biochem.J. 161, 677–85.

    Google Scholar 

  13. Donohue, J. (1953) Proc.Natn.Acad.Sci.USA. 39, 470–78.

    Article  Google Scholar 

  14. Fiedler, F. and Kandier, O. (1973) Arch.Mikrobiol. 89, 51–66.

    Article  Google Scholar 

  15. Fleck, J., Mock, M., Minck, R. and Ghuysen, J-M. (1971) Biochim. biophys. Acta. 233, 489–503.

    Article  Google Scholar 

  16. Fordham, W. D. and Gilvarg, C. (1974) J. biol. Chem. 249, 2478–82.

    Google Scholar 

  17. Formanek, H., Formanek, S. and Wawra, H. (1974) Eur.J.Biochem. 46, 279–94.

    Article  Google Scholar 

  18. Formanek, H., Schleifer, K. H., Scidl, H. P., Lindemann, R. and Zundel, G. (1976) FEBS Letts. 70, 150–54.

    Article  Google Scholar 

  19. Fox, G. F., Magrum, L. J., Balch, W. E., Wolfe, R. S. and Woese, C. R. (1977) Proc.Natn.Acad.Sci.USA. 74, 4537–41.

    Article  Google Scholar 

  20. Ghuysen, J-M. (1968) Bact.Rev. 32, 425–64.

    Google Scholar 

  21. Ghuysen, J-M., Leyh-Bouille, M., Campbell, J. N., Moreno, R., Frere, J-M., Duez, C., Nieto, M. and Perkins, H. R. (1973) Biochemistry 12, 1243–51.

    Article  Google Scholar 

  22. Ghuysen, J-M., Strominger, J.L. and Tipper, D. J. (1968) In Comprehensive Biochemistry 26A, ed. Florkin, M. and Stotz, E. H., pp. 53–104, New York: American Elsevier.

    Google Scholar 

  23. Guinand, M., Vacheron, M. J. and Michel, G. (1970) FEBS Letts. 6, 37–9.

    Article  Google Scholar 

  24. Higgins, M. L. and Shockman, G. D. (1971) Crit. Rev.Microbiol. 1. 29–71.

    Article  Google Scholar 

  25. Hoare, D. S. and Work, E. (1957) Biochem.J. 65,441–7.

    Google Scholar 

  26. Kandier, O. and Hippe, H. (1977) Arch.Microbiol. 113, 57–60.

    Article  Google Scholar 

  27. Kandier, O. and König, H. (1978) Arch.Microbiol 118, 141–52.

    Article  Google Scholar 

  28. Kandier, O. and König, H. (1978) Hoppe-Seyler’s Z.Physiol.Chem. 359, 282–3.

    Google Scholar 

  29. Kelemen, M. V. and Rogers, H. J. (1971) Proc.Natn.Acad.Sci.USA. 68, 992–6.

    Article  Google Scholar 

  30. Knox, J. R. and Murthy, N. S. (1974) Acta crystallog. (B). 30, 365–71.

    Article  Google Scholar 

  31. König, H. and Kandier, O.(1979) Arch.Microbiol 121, 271–5.

    Article  Google Scholar 

  32. König, H. and Kandier, O. (1979) Arch.Microbiol. 123, 295–9.

    Article  Google Scholar 

  33. Labischinski, H., Barnickel, G., Bradaczek, H. and Giesbrecht, P. (1979) Eur.J. Biochem. 95, 147–55.

    Article  Google Scholar 

  34. Liu, T-Y., and Gotschlich, E. C. (1967) J. biol. Chem. 242, 471–6.

    Google Scholar 

  35. Marquis, R. E. (1968) J.Bact. 95, 775–81.

    Google Scholar 

  36. Martin, J.-P., Fleck, J., Mock, M. and Ghuysen, J-M. (1973) Eur.J.Biochem. 38, 301–6.

    Article  Google Scholar 

  37. Oldmixon, E. H., Glauser, S. and Higgins, M. L. (1974) Biopolymers 13, 2037–60.

    Article  Google Scholar 

  38. Perkins, H. R. (1965) Biochem.J. 95, 876–82.

    Google Scholar 

  39. Perkins, H. R. (1971) Biochem.J. 121, 417–23.

    Google Scholar 

  40. Ramachandran, G. N., Ramakrishnan, C. and Sasisekhavan, V. (1963) In Aspects of Protein Structure, ed. Ramachandran, G. N., pp. 121–35, New York and London: Academic Press.

    Google Scholar 

  41. Rogers, H. J. (1974) Ann. N.Y. Acad.Sci. 235, 29–51.

    Article  Google Scholar 

  42. Salton, M. R. J. (1953) Biochim. biophys. Acta. 10, 512–23.

    Article  Google Scholar 

  43. Schleifer, K. H. and Kandier, O. (1972) Bact.Rev. 36, 407–477.

    Google Scholar 

  44. Steber, J. and Schleifer, K. H. (1975) Arch.Microbiol 105, 173–7.

    Article  Google Scholar 

  45. Strange, R. E. and Dark, F. A. (1956) Nature, Lond. 177, 186–88.

    Article  Google Scholar 

  46. Tipper, D. J. (1970) Int. J. syst. Bacteriol. 20, 361–77.

    Article  Google Scholar 

  47. Tipper, D. J., Ghuysen, J-M. and Strominger, J. L. (1965) Biochemistry 4, 468–73.

    Article  Google Scholar 

  48. Tipper, D. J. and Strominger, J. L. (1965) Proc.Natn.Acad.Sci.USA. 54, 1133–41.

    Article  Google Scholar 

  49. Tipper, D. J. and Strominger, J. L. (1966) Biochem. biophys. Res.Commun. 22, 48–56.

    Article  Google Scholar 

  50. Tipper, D. J., Strominger, J. L. and Ensign, J. C. (1967) Biochemistry 6, 906–920.

    Article  Google Scholar 

  51. Vacheron, M-J., Guinand, M., Michel, G. and Ghuysen, J-M. (1972) Eur.J.Bioehem. 29, 156–66.

    Article  Google Scholar 

  52. Van Heijenoort, J., Elbaz, L., Dezélée, P., Petit, J-F., Bricas, E. and Ghuysen, J. M. (1969) Biochemistry 8, 207–211.

    Article  Google Scholar 

  53. Vilkas, E., Massot, J. C. and Zissmann, E. (1970) FEBS Letts. 7, 77–9.

    Article  Google Scholar 

  54. Virudachalam, R. and Rao, V. S. R. (1977) Int.J.Peptide Protein Res. 10, 51–9.

    Article  Google Scholar 

  55. Ward, J. B. (1973) Biochem.J. 133, 395–8.

    Google Scholar 

  56. Warth, A. D. and Strominger, J. L. (1969) Proc.Natn.Acad.Sci.USA 64, 528–35.

    Article  Google Scholar 

  57. Warth, A. D. and Strominger, J. L. (1972) Biochemistry 11, 1389–96.

    Article  Google Scholar 

  58. Weidel, W. (1950) In Viruses 1950, ed. Delbrück. M., pp. 119–21, California Institute of Technology.

    Google Scholar 

  59. Wheat, R. W. and Ghuysen, J-M. (1971) J. Bact. 105, 1219–21.

    Google Scholar 

  60. Wheat, R. W., Kulkarni, S., Cosmatos, A., Scheer, E. R. and Steele, R. S. (1969) J. biolChem. 244, 4921–5306.

    Google Scholar 

  61. Wickus, G. G. and Strominger, J. L. (1972) J. biolChem. 247, 5297–306.

    Google Scholar 

  62. Wietzerbin, J., Das, B. C., Petit, J-F., Lederer, E., Leyh-Bouille, M. and Ghuysen, J-M. (1974) Biochemistry 13, 3471–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 H. J. Rogers, H. R. Perkins and J. B. Ward

About this chapter

Cite this chapter

Rogers, H.J., Perkins, H.R., Ward, J.B. (1980). Structure of peptidoglycan. In: Microbial Cell Walls and Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6014-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6014-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6016-2

  • Online ISBN: 978-94-011-6014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics