Skip to main content

Scientific Basis for Electrical Stimulation

  • Chapter
Advances in Meat Research

Abstract

The development of electrical stimulation as a means of meat tenderization dates back to the basic work of Harsham and Deatherage (1951) and the patents assigned by them to the Kroger Company. Although the process was reported to tenderize beef carcasses, it was not adopted by the meat industry. The reasons for its failure to be accepted are probably related to the fact that cold shortening of prerigor muscle was not yet recognized, and thus means of preventing its development were not deemed necessary. Furthermore, the importance of meat tenderness had not yet been fully emphasized by consumer studies. The role of meat tenderness in consumer satiety was fully realized only when large-scale consumer studies emphasized its importance. Development of large supermarkets and the ready availability of precut and packaged steaks in self-service meat display cases did not occur until the late 1940s and early 1950s; consequently, the resulting lack of meat tenderness was only beginning to be recognized at this time so no emphasis was placed on the importance of the discovery that electrical stimulation improved meat tenderness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASHMORE, C.R. and DOERR, L. 1971. Comparative aspects of muscle fiber types in different species. Exp. Neurol. 31, 431.

    Article  Google Scholar 

  • BATZER, O.F., SANTORO, A.T. and LANDMANN, W.A. 1962. Identification of beef flavor precursors. J. Agric. Food Chem. 10, 94.

    Article  CAS  Google Scholar 

  • BEATTY, C.H., BASINGER, G.M. and BOCEK, R.M. 1967. Differentiation of red and white fibers in muscle from fetal, neonatal and infant Rhesus monkeys. J. Histochem. Cytochem. 15, 93.

    Article  CAS  Google Scholar 

  • BEECHER, G.R. 1966. Biochemical characteristics of red and white striated muscle. Ph.D. Thesis. Univ. of Wisconsin, Madison.

    Google Scholar 

  • BENDALL, J.R. 1969. Muscles, Molecules and Movement. Heinemann Educational Books, London.

    Google Scholar 

  • BENDALL, J.R. 1976. Electrical stimulation of rabbit and lamb carcasses. J. Sci. Food Agric. 27, 819.

    Article  CAS  Google Scholar 

  • BENDALL, J.R., KETTERIDGE, C.C. and GEORGE, A.R. 1976. The electrical stimulation of beef carcasses. J. Sci. Food Agric. 27, 1123.

    Article  CAS  Google Scholar 

  • BERNARD, C. 1877. Lessons upon diabetes and glycogen formation in animals. In Lectures on Experimental Physiology. Bailliere et Fils, Paris. (French)

    Google Scholar 

  • BIRKNER, M.L. and AUERBACH, E. 1960. Microscopic structure of animal tissues. In The Science of Meat and Meat Products, pp. 10–55. American Meat Institute Foundation (Editor). W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • BODWELL, C.E., PEARSON, A.M. and SPOONER, M.E. 1965. Post-mortem changes in muscle. I. Chemical changes in beef. J. Food Sci. 30, 766.

    Article  CAS  Google Scholar 

  • BOUTON, P.E., FORD, A.L., HARRIS, P.V. and SHAW, F.D. 1980. Electrical stimulation of beef sides. Meat Sci. 4, 145.

    Article  CAS  Google Scholar 

  • BRAND, M.D. and LEHNINGER, A.L. 1975. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J. Biol. Chem. 250, 7958.

    CAS  Google Scholar 

  • BUEGE, D.R. and MARSH, B.B. 1975. Mitochondrial calcium and post-mortem muscle shortening. Biochem. Biophys. Res. Commun. 65, 478.

    Article  CAS  Google Scholar 

  • CALKINS, C.R., SAVELL, J.W., SMITH, G.C. and MURPHEY, C.E. 1980. Quality-indicating characteristics of beef as affected by electrical stimulation and postmortem chilling time. J. Food Sci. 45, 1330.

    Article  Google Scholar 

  • CALKINS, C.R., DUTSON, T.R., SMITH, G.C. and CARPENTER, Z.L. 1982. Concentration of creatine phosphate, adenine nucleotides and their derivatives in electrically stimulated and non-stimulated beef. J. Food Sci. 47, 1350.

    Article  CAS  Google Scholar 

  • CARSE, W.A. 1973. Meat quality and the acceleration of postmortem glycolysis by electrical stimulation. J. Food Technol. 8, 163.

    Article  Google Scholar 

  • CASSENS, R.G. 1971. Microscopic structure of animal tissues. In The Science of Meat and Meat Products, 2nd Edition, pp. 11–75. J.F. Price and B.S. Schweigert (Editors). W.H. Freeman & Co, San Francisco.

    Google Scholar 

  • CASSENS, R.G. and COOPER, C.C. 1971. Red and white muscle. Adv. Food Res. 19, 1.

    CAS  Google Scholar 

  • CHRYSTALL, B.B., DEVINE, C.E. and DAVEY, C.L. 1980. Studies in electrical stimulation: Post-mortem decline in nervous response in lambs. Meat Sci. 4, 69.

    Article  CAS  Google Scholar 

  • CIA, G. and MARSH, B.B. 1976. Properties of beef cooked before the onset of rigor. J. Food Sci. 41, 1259.

    Article  Google Scholar 

  • CORNFORTH, D.P., PEARSON, A.M. and MERKEL, R.A. 1980. Relationship of mitochondria and sarcoplasmic reticulum to cold shortening. Meat Sci. 4, 103.

    Article  CAS  Google Scholar 

  • DANNERT, R.D. and PEARSON, A.M. 1977. Concentration of inosine 5’-monophos-phate in meat. J. Food Sci. 32, 49.

    Article  Google Scholar 

  • DAVEY, C.L. and GILBERT, K.V. 1974. The mechanisms of cold induced shortening in beef muscle. J. Food Technol. 9, 51.

    Article  CAS  Google Scholar 

  • DUBOWITZ, V. and PEARSE, A.G.E. 1960. Reciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle. Nature 185, 701.

    Article  CAS  Google Scholar 

  • DUTSON, T.R. and YATES, L.D. 1978. Molecular and ultrastructural alterations in bovine muscle caused by high temperature and low pH incubation. Proc. 24th Eur. Meat Res. Worker’s Conf. 24, E6.

    Google Scholar 

  • DUTSON, T.R., PEARSON, A.M. and MERKEL, R.A. 1974. Ultrastructural postmortem changes in normal and low quality porcine muscle fibers. J. Food Sci. 39, 32.

    Article  Google Scholar 

  • DUTSON, T.R., YATES, L.D., SMITH, G.C, CARPENTER, Z.L. and HOSTETLER, R.L. 1977. Rigor onset before chilling. Proc. Recip. Meat Conf. 30, 79.

    CAS  Google Scholar 

  • DUTSON, T.R., SMITH, G.C. and CARPENTER, Z.L. 1980A. Lysosomal enzyme distribution in electrically stimulated ovine muscle. J. Food Sci. 45, 1097.

    Article  CAS  Google Scholar 

  • DUTSON, T.R., SMITH, G.C, SAVELL, J.W. and CARPENTER, Z.L. 1980B. Possible mechanisms by which electrical stimulation improves meat tenderness. Proc. Eur. Meet. Meat Res. Workers 26 (II) 84.

    Google Scholar 

  • DUTSON, T.R., SAVELL, J.W. and SMITH, G.C. 1982. Electrical stimulation of ante-mortem stressed beef. Meat Sci. 6, 159.

    Article  CAS  Google Scholar 

  • EBASHI, S. 1961. The role of relaxing factor in the contraction relaxation cycle of muscle. Progr. Theor. Phys. (Kyoto) 17 (Suppl.) 35.

    Google Scholar 

  • GAUTHIER, G.R. 1970. The ultrastructure of three fiber types in mammalian skeletal muscle. In The Physiology and Biochemistry of Muscle as a Food, Vol. 2. P. 103. E.J. Briskey, R.G. Cassens and B.B. Marsh (Editors). Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • GEORGE, A.R., BENDALL, J.R. and JONES, R.C.D. 1980. The tenderising effect of electrical stimulation of beef carcasses. Meat Sci. 4, 51.

    Article  CAS  Google Scholar 

  • HALL, J., LATSCHAR, E.E. and MACKINTOSH, D.L. 1944. Characteristics of dark-cutting beef. Survey and preliminary investigation. Kans. Agric. Exp. Stn. Bull. 58.

    Google Scholar 

  • HALL, L.C., SAVELL, J.W. and SMITH, G.C. 1980. Retail appearance of electrically stimulated beef. J. Food Sci. 45, 171.

    Article  Google Scholar 

  • HAM, A.W. 1969. Histology, 6th Edition. J.B. Lippincott Co., Philadelphia.

    Google Scholar 

  • HANSON, J. and HUXLEY, H.E. 1955. The structural basis of contraction in striated muscle. Symp. Soc. Exp. Biol. 9, 228.

    Google Scholar 

  • HARSHAM, A. and DEATHERAGE, F. 1951. Tenderization of meat. U.S. Pat. 2,544,681.

    Google Scholar 

  • HASSELBACH, W. and MAKINOSE, M. 1962. ATPase and active transport. Bio-chem. Biophys. Res. Commun. 7, 132.

    Article  CAS  Google Scholar 

  • HERRING, H.K., CASSENS, R.G. and BRISKEY, E.J. 1965. Further studies on bovine muscle tenderness as influenced by length and fiber diameter. J. Food Sci. 30, 1049.

    Article  Google Scholar 

  • HUXLEY, H.E. 1965. The mechanism of muscular contraction. Sci. Am. 213, 18.

    Article  CAS  Google Scholar 

  • KIMURA, S. and RASMUSSEN, H. 1977. Adrenal glucocorticoids, adenine nu-cleotide translocation, and mitochondrial calcium accumulation. J. Biol. Chem. 252, 1217.

    CAS  Google Scholar 

  • LECHOWICH, R.V. 1971. Microbiology of meat. In The Science of Meat and Meat Products, 2nd Edition, pp. 151–184. J.F. Price and B.S. Schweigert (Editors). W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • LEHNINGER, A.L., CARAFOLI, E. and ROSSI, C.S. 1967. Energy-linked ion movements in mitochondrial systems. Adv. Enzymol. 29, 259.

    CAS  Google Scholar 

  • LOCKER, R.H. 1960. Degree of muscular contraction as a factor in tenderness of beef. Food Res. 25, 304.

    Google Scholar 

  • LOCKER, R.H. and HAGYARD, C.J. 1963. A cold shortening effect in beef muscles. J. Sci. Food Agric. 14, 787.

    Article  CAS  Google Scholar 

  • MARSH, B.B. 1952A. The effects of ATP on the fiber volume of a muscle homogenate. Biochim. Biophys. Acta 9, 247.

    Article  CAS  Google Scholar 

  • MARSH, B.B. 1952B. Observations on rigor mortis in whale muscle. Biochim. Biophys. Acta 9, 127.

    Article  CAS  Google Scholar 

  • MARSH, B.B. and CARSE, W.A. 1974. Meat tenderness and the sliding filament hypothesis. J. Food Technol. 9, 129.

    Article  Google Scholar 

  • MARSH, B.B. and LEET, N.G. 1966. Studies in meat tenderness. III. The effects of cold shortening on tenderness. J. Food Sci. 31, 450.

    Article  Google Scholar 

  • MARSH, B.B., WOODHAMS, P.R. and LEET, N.G. 1968. Studies on meat tenderness. V. Effects of carcass cooling and freezing before completion of rigor mortis. J. Food Sci. 33, 12.

    Article  Google Scholar 

  • MARSH, B.B., LEET, N.G. and DICKSON, M.R. 1974. The ultrastructure and tenderness of highly cold shortened muscle. J. Food Technol. 9, 141.

    Article  Google Scholar 

  • MARSH, B.B., LOCKNER, J.V., TAKAHASHI, G. and KRAGNESS, D.D. 1981. Effects of early post-mortem pH and temperature on beef tenderness. Meat Sci. 5, 479.

    Article  CAS  Google Scholar 

  • NAUSS, K.M. and DAVIES, R.E. 1966. Changes in phosphate compounds during the development and maintenance of rigor mortis. J. Biol. Chem. 241, 2918.

    CAS  Google Scholar 

  • NEWBOLD, R.P. 1966. Changes associated with rigor mortis. In The Physiology and Biochemistry of Muscle as a Food. E.J. Briskey, R.G. Cassens and J. C. Trautman (Editors). Univ. of Wisconsin Press, Madison, pp. 213–224.

    Google Scholar 

  • NEWBOLD, R.P. and LEE, C.A. 1965. Postmortem glycolysis in skeletal muscle. The extent of glycolysis in diluted preparations of mammalian muscle. Biochem. J. 97,1.

    CAS  Google Scholar 

  • ORCUTT, M.W., DUTSON, T.R., CORNFORTH, D. and DUTSON, P.J. 1982. Analysis of the heat ring phenomenon in Holstein-Friesian steer carcasses. Proc. Am.-Can. Soc. Anim. Sci. Abstr., 44.

    Google Scholar 

  • PEARSON, A.M. 1984. Muscle function and post-mortem change. In The Science of Meat and Meat Products, 3rd Edition. J.F. Price and B.S. Schweigert (Editors). Food and Nutrition Press, Westport, CT. (In press)

    Google Scholar 

  • PEARSON, A.M., CARSE, W.A., DAVEY, C.L., LOCKER, R.H. and HAGYARD, C.J. 1973. Influence of epinephrine and calcium upon glycolysis, tenderness and shortening of sheep muscle. J. Food Sci. 38, 1124.

    Article  Google Scholar 

  • PORTZEHL, H. 1957. The binding of the relaxing factor of Marsh on muscle. Biochim. Biophys. Acta 26, 373. (German)

    Article  CAS  Google Scholar 

  • PORZIO, M.A., PEARSON, A.M., and CORNFORTH, D.P. 1979. M-line protein: Presence of two non-equivalent high molecular weight compounds. Meat Sci. 3, 31.

    Article  CAS  Google Scholar 

  • SAVELL, J.W. 1979. Industry acceptance of electrical stimulation. Proc. Recip. Meat Conf. 3, 31.

    Google Scholar 

  • SAVELL, J.W., SMITH, G.C. and CARPENTER, Z.L. 1978A Effect of electrical stimulation on quality and palatability of light-weight beef carcasses. J. Anim. Sci. 46, 1221.

    Google Scholar 

  • SAVELL, J.W., DUTSON, T.R., SMITH, G.C. and CARPENTER, Z.L. 1978B. Structural changes in electrically stimulated beef muscle. J. Food Sci. 43, 1606.

    Article  Google Scholar 

  • SCHWARTZ, W.N. and BIRD, J.W.C. 1977. Degradation of myofibrillar proteins by cathepsin D. Biochem. J. 167, 811B.

    Google Scholar 

  • SISSON, S. and GROSSMAN, J.D. 1953. The Anatomy of Domestic Animals, 4th Edition. W.B. Saunders Co., Philadelphia.

    Google Scholar 

  • SMITH, P.E. and COPENHAVER, W.M. 1948. Bailey’s Textbook of Histology, 10th Edition. Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • SORINMADE, S.O., CROSS, H.R., ONO, K. and WERGIN, W.P. 1982. Mechanisms of ultrastructural changes in electrically stimulated beef longissimus muscle. Meat Sci. 6, 71.

    Article  CAS  Google Scholar 

  • STEIN, J.M. and PADYKULA, H. A. 1962. Histochemical classification of individual skeletal muscle fibers of the rat. Am. J. Anat. 110, 103.

    Article  CAS  Google Scholar 

  • STRYER, L. 1981. Biochemistry, 2nd Edition. W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • TARRANT, P.V. and MOTHERSILL, C. 1977. Glycolysis and associated changes in beef carcasses. J. Sci. Food Agric. 28, 739.

    Article  CAS  Google Scholar 

  • VOYLE, C.A. 1969. Some observations on the histology of cold-shortened muscle. J. Food Technol. 4, 275.

    Article  Google Scholar 

  • WEBER, A. and HERZ, R. 1962. Requirement for calcium in the synaeresis of myofibrils. Biochem. Biophys. Res. Commun. 6, 364.

    Article  Google Scholar 

  • WEINER, P.D. and PEARSON, A.M. 1966. Inhibition of rigor mortis by ethylenediamine tetraacetic acid. Proc. Soc. Exp. Biol. Med. 123, 185.

    CAS  Google Scholar 

  • WEINER, P.D. and PEARSON, A.M. 1969. Calcium chelators influence some physical and chemical properties of rabbit and pig muscle. J. Food Sci. 34, 592.

    Article  CAS  Google Scholar 

  • WHITE, A., HANDLER, P. and SMITH, E.L. 1964. Principles of Biochemistry, 3rd Edition. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The AVI Publishing Company, Inc.

About this chapter

Cite this chapter

Pearson, A.M., Dutson, T.R. (1985). Scientific Basis for Electrical Stimulation. In: Advances in Meat Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5939-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5939-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5941-8

  • Online ISBN: 978-94-011-5939-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics