Skip to main content

Role of carnitine supplementation in clinical nutrition

  • Chapter
Book cover Advances in Clinical Nutrition

Abstract

Carnitine is an absolute requirement for the transport of long-chain fatty acids into the matrix of the mitochondria which is the site of β-oxidation1. We frequently speak of carnitine stimulating fatty acid oxidation. However, the role of carnitine in long-chain fatty acid oxidation is much greater than that of mere stimulation. In the absence of carnitine, long-chain fatty acids cannot penetrate the inner membrane of the mitochondria; and since the cytosol does not contain any of the enzymes needed for β-oxidation of long-chain fatty acids, the cell cannot utilize the fatty acids for energy via β-oxidation. As clinical nutritionists, we must realize that when we provide long-chain fatty acids as an energy source, carnitine must be provided in adequate amounts by either endogenous or exogenous sources, or the patient will simply not be able to derive energy from the fatty acids. Nutritionists have traditionally ignored the possible need for exogenous carnitine because we assumed that endogenous synthesis was always adequate, and therefore exogenous sources were not required. We now know that endogenous synthesis of carnitine is not adequate in all individuals1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broquist, H. P. and Borum, P. R. (1982). Carnitine biosynthesis: nutritional implications. In Draper, H. H. (ed.) Advances in Nutritional Research. Vol. 4, pp. 181–204. ( New York: Plenum Press) ’

    Google Scholar 

  2. Rebouche, C. J. and Engel, A. G. (1980). In vitro analysis of hepatic carnitine biosynthesis in human systemic carnitine deficiency. Clin. Chim. Acta, 106, 295

    Article  CAS  Google Scholar 

  3. Rebouche, C. J. and Engel, A. G. (1980). Tissue distribution of carnitine biosynthetic enzymes in man. Biochim. Biophys. Acta, 630, 22

    Article  CAS  Google Scholar 

  4. Borum, P. R. (1978). Variation in tissue carnitine concentrations with age and sex in the rat. Biochem. J., 176, 677

    CAS  Google Scholar 

  5. Battistella, P. A., Vergani, L. and Angelini, C. (1980). Tissue levels of carnitine in human growth. In Berra, B. and DiDonato, S. (eds.). Fatty Acids and Triglycerides: Biosynthesis and Transport in Normal and Pathological Conditions. pp. 151–162. ( Melan: Edi Ermes )

    Google Scholar 

  6. Novak, M., Penn-Walker, D., Hann, P. and Monkus, E. F. (1975). Effect of carnitine on lipolysis in subcutaneous adipose tissue of newborns. Biol. Neonate, 25, 85

    CAS  Google Scholar 

  7. McGarry, J. D. and Foster, D. W. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. In Snell, E. (ed.). Annual Reviews of Biochemistry. Vol. 49, pp. 395–420. ( Palo Alto: Annual Reviews Inc. )

    Google Scholar 

  8. Novak, M., Penn-Walker, D. and Monkus, E. F. (1975). Oxidation of fatty acids by mitochondria obtained from newborn subcutaneous (white) adipose tissue. Biol. Neonate, 25, 95

    CAS  Google Scholar 

  9. Borum, P. R., York, C. M. and Broquist, H. P. (1979). Carnitine content of liquid formulas and special diets. Am. J. Clin. Nutr., 32, 2272

    CAS  Google Scholar 

  10. Robles-Valdes, C., McGarry, J. D. and Foster, D. W. (1976). Maternal-fetal carnitine relationships and neonatal ketosis in the rat. J. Biol. Chem., 251, 6007

    CAS  Google Scholar 

  11. Hahn, P. and Skala, J. P. (1975). The role of carnitine in brown adipose tissue of suckling rats. Comp. Biochem. Physiol., 51, 507

    CAS  Google Scholar 

  12. Schiff, D., Andrew, G. and Chan, G. (1978). Metabolism of intravenously administered lipid in the newborn. In Stern, L., Oh, W. and Fries-Hansen, B. (eds.) Intensive Care in the Newborn. Vol. II, pp. 267–273. ( New York: Masson )

    Google Scholar 

  13. Schiff, D., Chan, G., Seccombe, D. and Hahn, P. (1978). Plasma carnitine levels during intravenous feeding of the neonate. J. Pediatr., 95, 1043

    Google Scholar 

  14. Penn, D., Schmidt-Sommerfeld, E. and Wolf, H. (1980). Carnitine deficiency in premature infants receiving total parenteral nutrition. Early Hum. Dev., 4, 23

    Article  CAS  Google Scholar 

  15. Penn, D., Schmidt-Sommerfeld, E. and Pascu, F. (1981). Decreased tissue carnitine concentrations in newborn infants receiving total parenteral nutrition. J. Pediatr., 98, 976

    Article  CAS  Google Scholar 

  16. Novak, M., Wieser, P. B., Buch, M. and Hahn, P. (1979). Acetylcarnitine and free carnitine in body fluids before and after birth. Pediatr. Res., 13, 10

    Article  CAS  Google Scholar 

  17. DeFelice, S. L. and Klein, M. I. (1980). Carnitine and hemodialysis — a minireview. Curr. Ther. Res., 28, 195

    Google Scholar 

  18. Bizzi, A., Mingardi, G., Codegoni, A. M., Mecca, G. and Garattini, S. (1978). Accelerated recovery of post-dialysis plasma carnitine fall by oral carnitine. Biomedicine, 29, 183

    CAS  Google Scholar 

  19. Gouarnieri, G. F., Ranieri, F., Toigo, G., Vasile, A., Cimon, M., Rizzoli, V., Moracchiello, M. and Campanacci, L. (1980). Lipid-lowering effect of carnitine in chronically uremic patients treated with maintenance hemodialysis. Am. J. Clin. Nutr., 33, 1489

    Google Scholar 

  20. Bizzi, A., Cini, M., Garattini, S., Mingardi, G., Licini, L. and Mecca, G. (1979). L-carnitine addition to hemodialysis fluid prevents plasma-carnitine deficiency during dialysis. Lancet, 1, 882

    Article  CAS  Google Scholar 

  21. Rudman, D., Sewell, C. W. and Ainsley, J. D. (1977). Deficiency of carnitine in cachectic cirrhotic patients. J. Clin. Invest., 60, 716

    Article  CAS  Google Scholar 

  22. Kosalcharoen, P., Nappi, J., Peduzzi, P., Shug, A., Patel, A., Thomas, F. and Thomsen, J. H. (1981). Improved exercise tolerance after administration of carnitine. Curr. Ther. Res., 30, 753

    Google Scholar 

  23. Tripp, M. E., Katcher, M. L., Peters, H. A., Gilkert, E. F., Arya, S., Hedach, R. J. and Shug, A. (1981). Systemic carnitine deficiency presenting as familial endocardial fibroelastosis. N. Engl. J. Med., 305, 385

    Article  CAS  Google Scholar 

  24. Borum, P. R., Vaughan, S. R., Graves, A. S. and Broquist, H. P. (19). Dietary carnitine. II. Carnitine content of foodstuffs in America. (In preparation)

    Google Scholar 

  25. Khan, L. and Banji, M. S. (1977). Plasma carnitine levels in children with protein-calorie malnutrition before and after rehabilitation. Clin. Chim. Acta, 75, 163

    Article  CAS  Google Scholar 

  26. Bazzato, G., Mezzina, C., Ciman, M. and Guarnieri, G. (1979). Myasthenia-like syndrome associated with carnitine in patients on long-term hemodialysis. Lancet, 1, 1041

    Article  CAS  Google Scholar 

  27. Bazzato, G., Coli, U., Landini, S., Mezzina, C. and Ciman, M. (1981). Myasthenia-like syndrome after D,L,- but not t,-carnitine. Lancet, 1, 1209

    Article  CAS  Google Scholar 

  28. Warshaw, J. B. and Curry, E. (1980). Comparison of serum carnitine and ketone body concentrations in breast and in formula fed newborn infants. J. Pediatr., 97, 122

    Article  CAS  Google Scholar 

  29. Shenai, J. P., Borum, P. R., Mohan, P. and Donlevy, S. C. (1982). Carnitine status at birth of newborn infants of varying gestation. Pediat. Res. (In press)

    Google Scholar 

  30. Christiansen, R. and Bremer, J. (1976). Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim. Biophys. Acta, 448, 562

    Article  CAS  Google Scholar 

  31. Molstad, P., Bohmer, T. and Hovig, T. (1978). Carnitine-induced uptake of L-carnitine into cells from an established cell line from human heart (CCL 27). Biochim. Biophys. Acta, 512, 557

    Article  CAS  Google Scholar 

  32. Willner, J. H., Ginsburg, S. and Dimauro, S. (1978). Active transport of carnitine into skeletal muscle. Neurology, 28, 721

    CAS  Google Scholar 

  33. Cantrell, C. R. and Borum, P. R. (1982). Identification of a cardiac carnitine binding protein. J. Biol. Chem. (In press)

    Google Scholar 

  34. Borum, P. R. and York, C. M. (1982). Red cell carnitine binding protein. Fed. Proc., 41, 1559

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 MTP Press Limited

About this chapter

Cite this chapter

Borum, P.R. (1983). Role of carnitine supplementation in clinical nutrition. In: Johnston, I.D.A. (eds) Advances in Clinical Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5918-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5918-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5920-3

  • Online ISBN: 978-94-011-5918-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics