Skip to main content

Congenital skeletal dysplasias — a better understanding via experimental models

  • Chapter
Teratogenic Mechanisms

Part of the book series: Advances in the Study of Birth Defects ((ASBD,volume 1))

  • 84 Accesses

Abstract

The two processes involved in bone formation are ossification and calcification. Ossification is the production of bone matrix in which the precipitation of minerals occurs (calcification). Chondrocytes, and more so osteoblasts, are primarily involved in both processes. During life (both during the active period of growth and after cessation of this process) there is a continuous process of bone remodelling — formation and resorption of bone, a dynamic process which causes growth of bone, fracture repair and maintenance of the proper skeletal configuration1. Different enzymes are involved in the processes of bone formation, growth and remodelling, and failure of one of these enzymes may cause failure of skeletal growth, thus producing distinct abnormalities — skeletal dysplasias. Although enzymopathies are the regular cause of skeletal dysplasias, and the missing enzymes are usually not well-defined, the biochemical deviation observed may also sometimes not be the primary cause, but rather the results of the skeletal defect2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guggenheim, K., Wolinsky, I. and Ornoy, A. (1978). Nutrition and bone formation. (CRC Press, Inc.) (In press)

    Google Scholar 

  2. Fanconi, G. (1973). Bone diseases of genetic origin. Triangle, 12, 129

    PubMed  CAS  Google Scholar 

  3. Rubin, P., Andrews, J. R., Swarm, R. and Gump, H. (1959). Radiation induced dysplasias of bone. Am. J. Roent., 82, 206

    CAS  Google Scholar 

  4. Ponseti, I. V. (1954). Lesions of the skeleton and of other mesodermal tissues in rats fed sweet pea (Lathyrus odoratus) seeds. J. Bone Jt. Surg., 36A, 1031

    Google Scholar 

  5. Ornoy, A., Sekeles, E., Smith, P., Simkin, A. and Kohn, G. (1976). Achondrogenesis type I in three sibling fetuses. Scanning and transmission electron microscopy. Am. J. Pathol., 82, 71

    PubMed  CAS  Google Scholar 

  6. Ornoy, A. and Kim, J. A. (1977). Scanning electron microscopic findings in osteogenesis imperfecta fetalis. Israeli. Med. Sci., 13, 26

    CAS  Google Scholar 

  7. Rubin, P. (1969). Dynamic Classification of Bone Dysplasias. (Chicago: Yearbook Medical Publishers, Inc.)

    Google Scholar 

  8. Johnson, D. R. and Wise, J. M. (1971). Cartilage anomaly (can). A new mutant gene in the mouse. J. Embryol. Exp. Morphol., 25, 21

    PubMed  CAS  Google Scholar 

  9. Bonucci, E., Del Marco, A., Nicoletti, B., Petrinelli, P. and Pozzi, L. (1976). Histological and histochemical investigation of achondroplastic mice. A possible model for human achondroplasia. Growth, 40, 241

    PubMed  CAS  Google Scholar 

  10. Gaffney, L. J. (1975). Chondrodystrophy: an inherited lethal condition in turkey embryos. J. Hered., 66, 339

    PubMed  CAS  Google Scholar 

  11. Gruneberg, H. (1963). The Pathology of Development. A Study of Inherited Skeletal Disorders in Animals. (Oxford: Blackwell Scientific Publications)

    Google Scholar 

  12. Pearse, L. and Brown, W. H. (1945). Hereditary achondroplasia in the rabbit. II. Pathologic aspects. J. Exp. Med., 45, 261

    Article  Google Scholar 

  13. Marks, S. C., Jr. (1973). Pathogenesis of osteopetrosis in the rat; reduced bone resorption due to reduced osteoclast function. Am. J. Anat., 138, 165

    Article  PubMed  Google Scholar 

  14. Nyberg, L. M. and Marks, S. C., Jr. (1975). Organ culture of osteopetrotic (i.a.) rat bone: evidence that the defect is cellular. Am. J. Anat., 144, 373

    Article  PubMed  CAS  Google Scholar 

  15. Ornoy, A., Horowitz, A., Kaspi, T., Michaeli, Y. and Nebel, L. (1972). Anomalous fetal and neonatal bone development induced by administration of cortisone and vitamin D2 to pregnant rats. In: Drugs and Fetal Development. M. A. Klingberg, A. Abramovici and J. Chemke, (eds.) pp. 219–226 (New York: Plenum Publishing Co.)

    Google Scholar 

  16. Rimoin, D. L., Hughes, G. N., Kaufman, R. L., Rosenthal, R. E., McAllister, W. H. and Silberberg, R. (1970). Endochondral ossification in achondroplastic dwarfism. N. Engl. J. Med., 283, 728

    Article  PubMed  CAS  Google Scholar 

  17. Harris, R. and Patton, J. T. (1971). Achondroplasia and thanatophoric dwarfism in the newborn. Clin. Genet., 2, 61

    Article  PubMed  CAS  Google Scholar 

  18. Warkany, J. (1971). Congenital Malformations. (Chicago: Yearbook Medical Publishers, Inc.) Part XIII, pp. 765–886

    Google Scholar 

  19. Brown, W. H. and Pearce, L. (1945). Hereditary achondroplasia in the rabbit. I. Physical appearance and general features. J. Exp. Med., 82, 241

    Article  PubMed  CAS  Google Scholar 

  20. Lane, P. W. and Dickie, M. M. (1968). Three recessive mutations producing disproportionate dwarfism in mice: achondroplasia, brachymorphic and stubby. J. Hered., 59, 300

    PubMed  CAS  Google Scholar 

  21. Bonucci, E., Gherardi, G., Del Marco, A., Nicoletti, B. and Petrinelli, P. (1977). An electron microscope investigation of cartilage and bone in achondroplastic (CN/CN) mice. J. Submicrosc. Cytol., 9, 299

    Google Scholar 

  22. Francis, J. O. M., Phil, D. and Smith, R. (1975). Polymeric collagen of skin in osteogenesis imperfecta, homocystinuria and Ehlers-Danlos and Marfan syndromes. Birth Defects, XI, 14

    Google Scholar 

  23. Engfeldt, T. and Hjerpe, A. (1976). Glycosaminoglycans of cartilage and bone tissue in two cases of osteogenesis imperfecta congenita. Acta Pathol. Microbiol. Scand., 84, 488

    CAS  Google Scholar 

  24. Engfeldt, B., Engström, A. and Zetterström, R. (1954). Biophysical studies of the bone tissue in osteogenesis imperfecta. J. Bone Jt. Surg. (B), 36, 654

    Google Scholar 

  25. Robichon, J. and Germain, J. P. (1968). Pathogenesis of osteogenesis imperfecta. Can. Med. Assoc. J., 99, 915

    Google Scholar 

  26. Follis, R. H. (1951). Osteogenesis imperfecta congenita: a connective tissue diathesis. J.Pediatr., 38, 713

    Google Scholar 

  27. Riley, F. C., Jowsey, J. and Brown, D. M. (1973). Osteogenesis imperfecta, morphologic and biochemical studies of connective tissue. Ped. Res., 9, 757

    Article  Google Scholar 

  28. Smith, R., Francis, M. J. O. and Bauze, R. J. (1975). Osteogenesis imperfecta, a clinical and biochemical study of a generalized connective tissue disorder. Qu. J. Med., 176, 555

    Google Scholar 

  29. Dickson, I. R., Miller, E. A. and Veis, A. (1975). Evidence for abnormality of bone matrix proteins in osteogenesis imperfecta. Lancet, 2, 586

    Article  PubMed  CAS  Google Scholar 

  30. Pentinnen, R. P., Lichtenstein, J. R., Martin, G. R. and McKusick, V. A. (1975). Abnormal collagen metabolism in cultured cells in osteogenesis imperfecta (collagen types fibroblasts). Proc. Nat. Acad. Sci. USA, 72, 586

    Article  Google Scholar 

  31. Warkany, J., Beaudry, P. H. and Hornstein, S. (1959). Attempted abortion with 4 amino-pteroylglutamic acid (aminopterin); malformations of the child. Am. J. Dis. Child., 97, 274

    CAS  Google Scholar 

  32. Becker, M. H., Genieser, N. B., Finegold, N., Miranda, D. and Spackman, T. (1975). Chondrodysplasia punctata: Is Maternal Warfarin Therapy a Factor? Am. J. Dis. Child., 129, 356

    PubMed  CAS  Google Scholar 

  33. Pearse, L. and Brown, W. H. (1948). Hereditary osteopetrosis of the rabbit. I. General factors and course of disease, general aspects. J. Exp. Med., 88, 579

    Article  Google Scholar 

  34. Pearse, L. (1950). Hereditary osteopetrosis of the rabbit. III. Pathologic observations, skeletal abnormalities. J. Exp. Med., 92, 591

    Article  Google Scholar 

  35. Barnicot, N. A. (1947). The osteoclast in the grey lethal mouse. Proc. R. Soc. London, Ser. B, 134, 476

    Article  Google Scholar 

  36. Greep, R. O. (1941). An hereditary absence of the incisor teeth. J. Heredity, 32, 397

    Google Scholar 

  37. Morse, A. and Greep, R. O. (1960). Histochemical observations on the ribonucleic acid and glycoprotein content of the osteoclasts of the normal and ia rat. Arch. Oral Biol., 2, 38

    Article  PubMed  CAS  Google Scholar 

  38. Kenny, A. D., Toepel, W. and Schour, I. (1958). Calcium and phosphorus metabolism in the ia rat. J. Dent. Res., 37, 432

    Article  PubMed  CAS  Google Scholar 

  39. Marks, S. C., Jr. (1978). Studies of the mechanism of spleen cell cure for osteopetrosis in ia rats. Appearance of osteoclasts with ruffled borders. Am. J. Anat., 151, 119

    Article  PubMed  Google Scholar 

  40. Nelson, M. M., Ashling, C. W. and Evans, H. M. (1952). Production of multiple congenital abnormalities in young by maternal pteroylgulamic acid deficiency during gestation. J. Nutr., 48, 61

    PubMed  CAS  Google Scholar 

  41. Hurley, L. S., Gowan, J. and Swenerton, H. (1971). Teratogenic effects of short-term and transitory zinc deficiency in rats. Teratology, 4, 199

    Article  CAS  Google Scholar 

  42. Hurley, L. S. and Asling, C. W. (1963). Localized epiphyseal dysplasia in offspring of manganese deficient rats. Anat. Rec., 145, 25

    Article  PubMed  CAS  Google Scholar 

  43. Hurley, L. S. (1977). Nutritional Deficiencies and Excesses. In: Handbook of Teratology. Vol. 1, pp. 261–308 (G. Wilson & H. Fraser, eds.) (New York: Plenum Press)

    Google Scholar 

  44. Rugh, R., Duhamel, L., Osborne, A. W. and Vorma, A. (1964). Persistent stunting following X-irradiation of the foetus. Am. J. Anat., 115, 185

    Article  PubMed  CAS  Google Scholar 

  45. Toverud, G. (1923). The influence of diet on teeth and bones. J. Biol. Chem., 58, 583

    CAS  Google Scholar 

  46. Macomber, D. (1927). Effect of a diet low in calcium on fertility, pregnancy and lactation in the rat. J. Am. Med. Assoc., 88, 6

    Article  CAS  Google Scholar 

  47. Sontag, L. W., Munson, P. and Huff, E. (1936). Effects on the fetus of hypervitaminosis D and calcium and phosphorus deficiency during pregnancy. Am. J. Dis. Child., 51, 302

    CAS  Google Scholar 

  48. Warkany, J. (1943). Effect of maternal rachitogenic diet on skeletal development of young rats. Am. J. Dis. Child., 66, 511

    CAS  Google Scholar 

  49. Ornoy, A., Menczel, J. and Nebel, L. (1967). Alteration in the mineral composition and metabolism of rat fetuses and their placentae induced by maternal hypervitaminosis D2. Israel J. Med. Sci., 4, 827

    Google Scholar 

  50. Ornoy, A., Nebel, L. and Menczel, J. (1969). Impaired osteogenesis of fetal long bones induced by maternal hypervitaminosis D2. Arch. Pathol., 87, 563

    PubMed  CAS  Google Scholar 

  51. Ornoy, A., Kaspi, T. and Nebel, L. (1972). Persistent defects of bone formation in young rats following maternal hypervitaminosis D2. Israel J. Med. Sci., 8, 943

    PubMed  CAS  Google Scholar 

  52. Ornoy, A. (1971). The effects of maternal hypercortisonism and hypervitaminosis D of fetal osteogenesis and ossification in rats. Teratology, 4, 383

    Article  PubMed  CAS  Google Scholar 

  53. Ornoy, A. and Horowitz, A. (1972). Postnatal effects of maternal hypercortisonism on skeletal development in newborn rats. Teratology, 5, 153

    Article  Google Scholar 

  54. Kaduri, A. J. and Ornoy, A. (1974). Impaired osteogenesis in the fetus induced by administration of cortisone to pregnant mice. IsraelJ. Med. Sci., 10, 476

    CAS  Google Scholar 

  55. Ornoy, A. (1973). Transplacental effects of estrogen on osteogenesis in rat foetuses. Pathology, 5, 183

    Article  PubMed  CAS  Google Scholar 

  56. Ornoy, A., Peshin, J. and Menczel, J. (1973). Transplacental effects of thyrocalcitonin of the osteogenesis and ossification of fetal long bones in rats. Proc. 9th Europ. Symp. Calcified Tissues, pp. 149–152 (H. Gzitober and J. Eshberger, eds.)

    Google Scholar 

  57. Peshin, J., Ornoy, A. and Menczel, J. (1976). Transplacental effects of thyrocalcitonin on intestinal calcium-binding protein, alkaline phosphatase activity and ossification of long bones in rat fetuses. Israel J. Med. Sci., 12, 248

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 MTP Press Limited

About this chapter

Cite this chapter

Ornoy, A. (1979). Congenital skeletal dysplasias — a better understanding via experimental models. In: Persaud, T.V.N. (eds) Teratogenic Mechanisms. Advances in the Study of Birth Defects, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5910-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5910-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5912-8

  • Online ISBN: 978-94-011-5910-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics