Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 81))

  • 567 Accesses

Abstract

Entangled states are central to the new field of quantum information, including quantum dense coding, teleportation, and computation. However, only a relatively small class of entangled states has been discussed extensively, much less investigated experimentally. In particular, efforts to date have focussed on two particles entangled in a single degree of freedom, for example polarization, or energy, or momentum direction. Novel phase-matching arrangements in spontaneous parametric down-conversion allow the preparation of pairs of photons that are simultaneously entangled in polarization, momentum-direction, and energy. We shall call such a multiply-entangled state “hyper-entangled”. In addition, an even more general state — a non-maximally entangled state — should be realizable, in which the amplitudes of the contributing terms are not equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Proc. Camb. Phil. Soc. 31, 555 (1935).

    Article  ADS  Google Scholar 

  2. C. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. C. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991); A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, ibid. 69, 1293 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995). T. Sleator and H. Weinfurter, ibid. 74, 4087 (1995). J. I. Cirac and P. Zoller, ibid. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  6. P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  7. J. Brendel, E. Mohler, and W. Martienssen, Europhys.Lett. 20, 575 (1992). P.G. Kwiat, A.E. Steinberg, and R.Y. Chiao, Phys. Rev. A 47, R2472 (1993). P.R. Tapster, J.G. Rarity, and P.C.M. Owens, Phys. Rev. Lett. 73, 1923 (1994).

    Article  ADS  Google Scholar 

  8. J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 64, 2495 (1990).

    Article  ADS  Google Scholar 

  9. M. Zukowski and A. Zeilinger, Phys. Lett. A 155, 69 (1991).

    Article  ADS  Google Scholar 

  10. T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, Phys. Rev. A 51, 3495 (1995).

    Article  ADS  Google Scholar 

  11. P. H. Eberhard, Phys. Rev. A 47, R747 (1993).

    Article  ADS  Google Scholar 

  12. P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 49, 3209 (1994).

    Article  ADS  Google Scholar 

  13. E. Schrödinger, Proc. Am. Phil. Soc. 124, 323 (1980).

    Google Scholar 

  14. D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).

    Article  ADS  Google Scholar 

  15. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).

    Article  ADS  Google Scholar 

  16. S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev. Lett. 68, 3259 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev. Lett 76, 4656 (1996).

    Article  ADS  Google Scholar 

  18. D. V. Strekalov et al., Phys. Rev. A 54, R1 (1996).

    Article  ADS  Google Scholar 

  19. P. G. Kwiat and H. Weiniurter, in preparation.

    Google Scholar 

  20. L. Hardy, Phys. Rev. Lett 68, 2981 (1992). L. Hardy, Phys. Lett A 167, 17 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. Eberhard and M. Petroff, Phys. Rev. A 48, R867 (1993). P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard and M. D. Petroff, Appl. Opt. 33, 1844 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kwiat, P.G. (1997). Production and Uses of Hyper-Entangled States. In: Ferrero, M., van der Merwe, A. (eds) New Developments on Fundamental Problems in Quantum Physics. Fundamental Theories of Physics, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5886-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5886-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6487-3

  • Online ISBN: 978-94-011-5886-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics