Skip to main content

Irreversible Quantum Evolution for Unstable Systems in Lax-Phillips Scattering Theory

  • Chapter
  • 562 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 81))

Abstract

The scattering theory of Lax and Phillips, designed primarily for hyperbolic systems, such as electromagnetic or acoustic waves, is described. This theory provides a realization of the theorem of Foias and Nagy; there is a subspace of the Hilbert space in which the unitary evolution of the system, restricted to this subspace, is realized as a semigroup. The embedding of the quantum theory into this structure, carried out by Flesia and Piron, is reviewed. We show how the density matrix for an effectively pure state can evolve to an effectively mixed state (decoherence) in this framework. Necessary conditions are given for the realization of the relation between the spectrum of the generator of the semigroup and the singularities of the S-matrix (in energy representation). It is shown that these conditions may be met in the Liouville space formulation of quantum evolution, and in the Hilbert space of relativistic quantum theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gamow, Z. Phys. 51, 204 (1928).

    Article  ADS  MATH  Google Scholar 

  2. T.D. Lee, R. Oehme, and C.N. Yang, Phys. Rev. 106, 340 (1957); T.T. Wu and C.N. Yang, Phys. Rev. Lett. 13, 380 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. V.F. Weisskopf and E.P. Wigner, Z. Phys. 63, 54 (1930); 65, 18 (1930).

    Article  ADS  MATH  Google Scholar 

  4. L.P. Horwitz and J.P. Marchand, Helv. Phys. Acta 42, 1039 (1969); L.P. Horwitz and J.P. Marchand, Rocky Mtn. J. Math. 1, 225 (1973).

    MathSciNet  Google Scholar 

  5. K.O. Friedrichs, Comm. Pure Appl. Math. 1, 361 (1948); T.D. Lee, Phys. Rev. 95, 1329 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bleistein, H. Neumann, R, Handelsman, and L.P. Horwitz, Nuovo Cimento 41A, 389 (1977).

    ADS  Google Scholar 

  7. C. Piron, Foundations of Quantum Physics(Benjamin/Cummings, Reading, 1976).

    MATH  Google Scholar 

  8. L.P. Horwitz, J.P. Marchand, and J. La Vita, J. Math. Phys. 12, 2537 (1971); D. Williams, Comm. Math. Phys. 21, 314 (1971).

    Article  ADS  MATH  Google Scholar 

  9. L.P. Horwitz and I.M. Sigal, Helv. Phys. Acta 51, 685 (1980); W. Baum-gartel, Math. Nachr. 75, 133 (1978). See also, G. Parravicini, V. Gorini, and E.C.G. Sudarshan, J. Math. Phys. 21, 2208 (1980); A. Bohm, The Rigged Hilbert Space and Quantum Mechanics (Springer Lecture Notes on Physics 78, Berlin, 1978); A. Bohm, Quantum Mechanics: Foundations and Applications (Springer, Berlin, 1986); A. Bohm, M. Gadella, and G.B. Mainland, Am. J. Phys. 57, 1103 (1989); T. Bailey and W.C. Schieve, Nuovo Cimento 47A, 231 (1978).

    MathSciNet  Google Scholar 

  10. P.D. Lax and R.S. Phillips, Scattering Theory (Academic, New York, 1967).

    MATH  Google Scholar 

  11. See, for example, L.E. Reichl, The Transition to Chaos in Conservative Classical Systems: Quantum Manifestation (Springer, New York, 1992), and references therein. I.M. Sigal, personal communication.

    Google Scholar 

  12. C. Flesia and C. Piron, Helv. Phys. Acta 57, 697 (1984).

    MathSciNet  Google Scholar 

  13. L.P. Horwitz and C. Piron, Helv. Phys. Acta 66, 694 (1993).

    MathSciNet  Google Scholar 

  14. LP. Cornfeld, S.V. Fomin, and Ya.G Sinai, Ergodic Theory (Springer, Berlin, 1982).

    Book  MATH  Google Scholar 

  15. C. Foias and B.Sz. Nagy, Acta Sci. Math. 23, 106 (1962). F. Riesz and B.Sz. Nagy, Functional Analysis, Appendix by B. Sz. Nagy, 2nd edn. (English translation: Dover, New York, 1990).

    MATH  Google Scholar 

  16. E. Eisenberg and L.P. Horwitz, in Advances in Chemical Physics, to be published (1996).

    Google Scholar 

  17. S. Machida and M. Namiki, Prog. Theor. Phys. 63, 1457 (1980); 63, 1833 (1980). M. Namiki and S. Pascazio, Phys. Rev. A44, 39 (1991).

    Article  ADS  Google Scholar 

  18. S. Tasaki, E. Eisenberg, and L.P. Horwitz, Found. Phys. 24, 1179 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. C. George, Physica 65, 277 (1973). I. Prigogine, C. George, F. Henin, and L. Rosenfeld, Chemica Scripta 4, 5 (1973). T. Petrosky, I. Prigogine, and S. Tasaki, Physica A173, 175 (1991); T. Petrosky and I. Prigogine, Physica A175, 146 (1991), and references therein.

    Article  ADS  Google Scholar 

  20. See, for example, J. Yvon, Correlations and Entropy in Classical Statistical Mechanics (Pergamon, Oxford, 1969).

    Google Scholar 

  21. I. Prigogine, Non-equilibrium Statistical Mechanics (Wiley, New York, 1961).

    Google Scholar 

  22. E. Eisenberg and L.P. Horwitz, Phys. Rev. A 52, 70 (1995).

    Article  ADS  Google Scholar 

  23. B. Koopman, Proc. Nat. Acad. Sci. 17, 315 (1931).

    Article  ADS  Google Scholar 

  24. B. Misra, Proc. Nat. Acad. Sci. 75, 1627 (1978); B. Misra, I. Prigogine, and M. Courbage, Proc. Nat. Acad. Sci. 76, 4768 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  25. E.C.G. Stueckelberg, Helv. Phys. Acta 14, 372, 588 (1941); 15, 23 (1942).

    Google Scholar 

  26. L.P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  27. Y. Strauss and L.P. Horwitz, in preparation.

    Google Scholar 

  28. L.P. Horwitz, W.C. Schieve, and C. Piron, Ann. Phys. (New York) 137, 306 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  29. L.P. Horwitz and Y. Rabin, Lett. Nuovo Cimento 17, 501 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horwitz, L.P., Eisenberg, E., Strauss, Y. (1997). Irreversible Quantum Evolution for Unstable Systems in Lax-Phillips Scattering Theory. In: Ferrero, M., van der Merwe, A. (eds) New Developments on Fundamental Problems in Quantum Physics. Fundamental Theories of Physics, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5886-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5886-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6487-3

  • Online ISBN: 978-94-011-5886-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics