Skip to main content

Deposition of Silicon Dioxide Films Using the Helicon Diffusion Reactor for Integrated Optics Applications

  • Chapter
  • 978 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 336))

Abstract

Existing optical fibre and fibre-device fabrication techniques have been complemented recently by the development of new processes for the fabrication of planar optical waveguides and devices. These processes rely on new forms of plasma reactors and diagnostic systems which allow in-situ control of optical parameters such as refractive index. These plasma processing systems allow the fabrication of optical devices which are not readily feasible in fibre technology, and allow the fabrication of very compact and highly complex optical circuitry which can be produced on a single photonic chip. They also offer the potential to integrate photonic devices with semiconductor sources and detectors to realise a compact, hybrid photonic-optoelectronic chip, complete with fibre pig-tailing. Because of their compactness and potential low cost, these types of photonic chips are attractive components for future high-capacity optical telecommunications and other networks now being planned as part of the information super highway. The paper presents the physical constraints and design rules for the fabrication of the devices, and the research carried out using a helicon plasma reactor to grow the thick films of silica necessary for the waveguides. From the start, the reactor was designed to process substrates at low temperatures to allow the integration with other optical and electronic components on the same wafer. Hence a considerable amount of research was carried out on the relation between the plasma parameters and the physical properties of the films deposited. The last section of the paper describes the fabrication of an actual device; a 1:8 splitter, and its characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawashi, M. (1990) Silica waveguides on silicon and their application to integrated-optic components, Optical and Quantum Electronics, 22, 391–416.

    Article  Google Scholar 

  2. Valette, S, Renard, S., Denis, H., Jadot, J.P., Fournier, A., Philippe, P., Gidon, P., Grouillet, A.M. and Desgranges, E. (1989) Si-based integrated optics technologies, Solid State Technologies, 32, 69–74.

    Article  Google Scholar 

  3. Ladouceur, F., and Love, J.D. (1996) Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London.

    Google Scholar 

  4. Hewlett, S.J., Ladouceur, F. and Love, J.D. (1994) Splice loss in single- and twin-core buried channel waveguide devices, Optical and Quantum Electronics, 26, 45–62.

    Article  Google Scholar 

  5. Snyder, A.W. and Love, J.D. (1983) Optical Waveguide Theory, Chapman and Hall, London.

    Google Scholar 

  6. Neumann, E.G. (1982) Curved dielectric optical waveguides with reduced transition losses, IEEE Proceeding Part-H, 129, 278.

    Google Scholar 

  7. Ladouceur, F and Labeye, P. (1995) A new general approach to optical waveguide path design, Journal of Lightwave Technology, LT-3, 481–492.

    Google Scholar 

  8. Marcuse, D. (1969) Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distorsion function, Bell System Technical Journal, 48, 3233–3242.

    Google Scholar 

  9. Boswell, R.W. and Porteous, R.K. (1987) Large Volume High Density RF Inductively Coupled Plasma, Appl Phys. Lett. 50, 1130–1132.

    Article  Google Scholar 

  10. Peiyuan Zhu and Boswell, R.W. (1991). A new Argon Ion Laser Based on an Electrodeless Plasma, J App.Phys. 68, (5) 1981–1984.

    Article  Google Scholar 

  11. Peiyuan Zhu and Boswell, R.W. (1990) ArII Laser Generated by Landau Damping of Whistler Waves at the Lower Hybrid Frequency, Phys. Rev. Lett. 63, 26, 2805–2807.

    Article  Google Scholar 

  12. Komori A, Shoji T., Miyamoto K., Kawai J., and Kuwai Y. (1991) Phys Fluids B, 3, 893.

    Article  Google Scholar 

  13. Chen F.F. (1991) Plasma ionization by Helicon waves. Plasma Phys. Control. Fusion, 33, 339.

    Article  Google Scholar 

  14. Perry, A.J. and Boswell, R.W. (1989) Fast Anisotropic Etching of Silicon in an Inductively Coupled Plasma, Reactor, Appl. Phys.Lett. 55, (2) 148–150.

    Article  Google Scholar 

  15. Perry, A.J., Vender, D. and Boswell, R.W. (1991) The application of the Helicon source to plasma processing, J. Vac. Sci. Technol. B9, (2) 310–317.

    Google Scholar 

  16. Boswell, R.W., Perry, A.J. and M. Emami (1989) Multipole Confined Diffusion Plasma Produced by 13.56 MHz Electrodeless, Source, J.Vac.Sci.Technol. A7, (6), 3345–3350.

    Google Scholar 

  17. Giroult-Matlakowski, G. Charles, C., Durandet, A., Boswell, R.W., Armand, S., Persing, H.M., Perry, A., Lloyd, P.D., Hyde, S.R., and Bogsanyi, D. (1994) Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications, J. Vac. Sci. Technol. A12, 2754–2761.

    Google Scholar 

  18. Charles, C., Giroult-Matlakowski, G., Boswell, R.W., Goullet, A., Turban, G., and Cardinaud, C. (1993) Characterization of silicon dioxide films deposited at low pressure and temperature in a helicon diffusion reactor, J. Vac. Sci. Technol., A11, 2954–2963.

    Google Scholar 

  19. Grigorovici R. and Vancu, A. (1968) Optical constants of amorphous silicon films near the main absorption edge Thin Solid Films 2, 105.

    Article  Google Scholar 

  20. Tsu, D.V., Lucovsky, G.L., and Davidson, B.N. (1989) Effects on the nearest neighbours and athe alloys matrix on SiH stretching vibrations in the atmosphere Si0r: H (0<r<2) alloy systemPhys. Rev. B40, 1795.

    Google Scholar 

  21. Lucovsky, G., Manitini, M.J., Srivastava, J.K. and Irene, E.A. (1987) Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy J. Vac. Sci. Technol. B5, 530.

    Google Scholar 

  22. Devine, R.A.B. (1988) Densification-induced infrared and Raman spectra variations of amorphous Si02 J. Vac. Sci. Technol. A6, 3154.

    Google Scholar 

  23. Charles, C. (1993) Ion energy distribution functions in a multiple confined argon plasma diffusing from 13.56-MHz helicon source. J. Vac. Sci. Technol. A11, 157.

    Google Scholar 

  24. Charles, C., Boswell, R.W. (submitted for publication in J. Appl. Phys.) Ion contribution to the deposition of silicon dioxide in oxygen/silane helicon diffusion plasmas.

    Google Scholar 

  25. Chen, F.F. (1992) Experiments on helicon plasma sources. J. Vac. Sci. Technol. A10, 1389

    Google Scholar 

  26. Howling, A.A., Dorier, J.L. and Hollenstein, Ch. (1993) Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments. Appl. Phys. Lett. 62, 1341.

    Article  Google Scholar 

  27. Charles, C. and Boswell, R.W. (1995) Sio2 deposition from oxygen/silane pulsed helicon diffusion plasmas J. Vac. Sci. Technol. A13, 2067.

    Google Scholar 

  28. Perrin, J. Takeda, Y. Hirano, N. Takeuchi, Y. and Matsuda, A. (1989) Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane. Surface Science 210, 114.

    Article  Google Scholar 

  29. Raupp, G.B., Cale, T.S. and Hey, H.P.W. (1992) The role of exygen excitation and loss in plasma-enhanced deposition of silicon dioxide from tetraethylorthosilicate. J. Vac. Sci. Technol. B10, 37.

    Google Scholar 

  30. Charles, C. Boswell, R.W., and Kuwahara, H. (1995) Appl. Phys. Lett. 67, 40.

    Article  Google Scholar 

  31. Turban, G., Catherine, Y. and Grolleau, B. (1982) Ion and radical reactions in the silane glow discharge deposition of a-Si: H films. Plasma Chemistry and Plasma Processing 2, 61.

    Article  Google Scholar 

  32. Joubert, O., Burke, R.,Vallier, L., Martinet, C. and Devine, R.A.B., (1993) Influence of ion energy on the physical properties of plasma deposited Si02 films, Appl. Phys. Lett. 62, 228.

    Article  Google Scholar 

  33. Mattox, D.M. (1989) Particle bombardment effects on thin-film deposition: A review, J. Vac. Sci. Technol. A7(3), 1105.

    Google Scholar 

  34. Seaward, K.L., Turner, J.E., Nauka K. and Nel, A.M.E. (1995) Roles of ions in electron cyclotron resonance plasma-enhanced chemical vapor deposition of silicon dioxide J Vac. Sci. Technol. B 13(1), 118.

    Article  Google Scholar 

  35. Jiang, N., Agius, B., Hugon, M.C., Olivier, J., and Puech, M. (1994) Radio-frequency bias effects on Si02 films deposited by distributed electron cyclotron resonance plasma enhanced chemical vapor deposition J. Appl. Phys, 76(3), 1847.

    Article  Google Scholar 

  36. Andosca, R.G., Varhue, W.J. and Adams, E. (1992) Silicon dioxide films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition J. Appl. Phys, 72 (3), 1126.

    Article  Google Scholar 

  37. McKenzie, D.R., Muller, D.A., and Pailthorpe, B.A. (1991) Compressive stress induced formation of highly tetrahedral amorphous carbon Phys. Rev. Lett. 67, 773.

    Article  Google Scholar 

  38. Martin, P.J. Netterfield, R.P., Kinder T. J. and Bendavid, A. (1992) Optical properties and stress of ion-assisted aluminium nitride thin films. Appl. Opt. 31(31), 6734.

    Article  Google Scholar 

  39. Ljungcrantz, H., Hultman, L., Sundgren J.-E. and Karlsson, L. (1995) Ion induced stress generation in arc-evaporated TiN films J. Appl. Phys. 78 (2), 832.

    Article  Google Scholar 

  40. Davis, C.A. (1993) A simple model for the formation of compressive stress in thin films by ion bombardment Thin Solid Films, 226, 30–34.

    Article  Google Scholar 

  41. Kitagawa, M., Hirao, T., Ohmura T. and Izumi, T. (1989) Structural properties of silicon oxide films prepared by the RF substrate biased ECR plasma CVD method Jpn. J. Appl. Phys, 28 (6), 1048.

    Article  Google Scholar 

  42. Narasimhamurty , (1981) Photoelastic and electro-optic properties of crystal Plenium Press, New York 292.

    Book  Google Scholar 

  43. Durandet A. and McKenzie: D. (in press in J. Appl. Phys.) Effect of the energy of the ion bombardment on the deposition of silicon dioxide.

    Google Scholar 

  44. Leplan, H., Geenen, B., Robic J. Y. and Pauleau, Y. (1995) Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior J. Appl. Phys. 78 (2), 962.

    Article  Google Scholar 

  45. McKenzie, D. R. (1993) Generation and applications of compressive stress induced by low energy ion beam bombardment J. Vac. Sci. Technol. B11 (5), 1928.

    MathSciNet  Google Scholar 

  46. Pliskin, W. A. (1977) Comparison of porperties of dielectric films deposited by various methods. J. Vac. Sci. Technol. 14, 1064.

    Article  Google Scholar 

  47. Devine, R. A. B. (1990) On the structures of low-temperature PECVD silicon dioxide films. Journal of Electronic Materials 19 (11), 1299.

    Article  Google Scholar 

  48. Durandet, A. Perry, A. Boswell, R.W. Ladouceur, F. Love, J.D. Faith, M. Kemeny, P. Ma X. and Austin, M. (1996) Silica buried channel waveguides fabricated at low temperature using PECVD. Electronics Letters, 32, 326–327.

    Article  Google Scholar 

  49. Bulat E. S., Tabasky, M. Tweed, B. Herrick, C. Hankin, S. Lewis, N. J. Oblas, D. and Fitzgerald T. (1993) Fabrication of waveguides using low-temperature plasma processing techniques, J. Vac. Sci. Technol., A11, (4), 1268–1274.

    Google Scholar 

  50. Bazylenko, M. V., Gross, M., Allen, P. M., and Chu, P. L. (1995): Fabrication of low temperature PECVD channel waveguides with significantly improved loss in the 1.50–1.55=B5m wavelength range. IEEE Photonics Tech. Lett. 7, 774–6.

    Article  Google Scholar 

  51. Grand, G., Jadot, J. P., Denis, H., Valette, S., Fournier, A., and Grouillet, A. M. (1990) Low-loss PECVD silica channel waveguides for optical communications. Electron, lett.,, 26, (25) 2135– 2137.

    Article  Google Scholar 

  52. Lai, Q. Gu, J. S. Smidt, M. K. Scmid J. and Melchior H. (1992) ‘Simple technology for fabrication of low-loss silica waveguides’, Electron, lett., 28, (11), 1000– 1001.

    Article  Google Scholar 

  53. Henry, C. H., Kazarinov, R. F., Lee, H. J., Orlowsky, K. J. and Katz, L. E. (1987) Low-loss Si3N4-Si02 optical waveguides on Si, Applied optics., 26, (13) 2621–2624.

    Article  Google Scholar 

  54. Imoto, K. and Hori, A. (1993) High refractive index difference and low-loss optical waveguide fabricated by low temperature process Electron lett., 29, (12), 1123–1124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boswell, R.W., Durandet, A., Charles, C., Ladouceur, F., Love, J.D. (1997). Deposition of Silicon Dioxide Films Using the Helicon Diffusion Reactor for Integrated Optics Applications. In: Williams, P.F. (eds) Plasma Processing of Semiconductors. NATO ASI Series, vol 336. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5884-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5884-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6486-6

  • Online ISBN: 978-94-011-5884-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics