Skip to main content

Abstract

In shear zones developed across foliated rocks the relationships between geometry, strain patterns and kinematics differ from those in isotropic rocks. These differences refer to:

  1. 1.

    the variability of the existing angle formed by the shear direction and the bent axis of the foliation, a fact that can originate equivocal kinematic inferences; and

  2. 2.

    the deviation of this type of shear zones from the heterogeneous simple shear model, caused by the non-passive behaviour of the previous foliation.

In addition to this second point, the presence of a pre-existing foliation induces the development of minor structures arising from buckling instabilities formed at the marginal domains. These questions are reviewed and illustrated with examples taken from the Cap de Creus in the Hercynian basement of the easternmost Pyrenees.

Acknowledgements: Part of this work was developed at the Department of Earth and Planetary Sciences, Johns Hopkins University (Baltimore) with financial support of the DGCICYT (Spain). The work was completed with the financial support of the DGCICYT PB 91-0477 Project. This contribution benefited from the constructive comments of S. Sengupta and from careful review by J. Cosgrove.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, T.H. (1978) Progressive deformation and reorientation of fold axes in a ductile mylonite zone: the Woodroffe thrust. Tectonophysics, 44, 285–320.

    Article  Google Scholar 

  • Berthé, D., Choukroune, P. and Jegouzo, P. (1979) Orthogneiss, mylonite and non coaxial deformation of granites: the example of the South Armorican shear zone. Journal of Structural Geology, 1, 31–42.

    Article  Google Scholar 

  • Biot, M.A. (1961) Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Bulletin of the Geological Society of America, 72, 1595–1620.

    Article  Google Scholar 

  • Bobyarchick, A.R. (1986) The eigenvalues of steady state flow in Mohr space. Tectonophysics, 122 35–51.

    Article  Google Scholar 

  • Carreras, J. (1975) Determinatión de las relaciones ángulares y de la deformatión por cizalla, para cizallamientos en materiales con una heterogeneidad planar. Acta geol. Hisp., 10, 141–145.

    Google Scholar 

  • Carreras, J. and Casas, J.M. (1987) On folding and shear zone development: a mesoscale structural study on the transition between two different tectonic styles. Tectonophysics, 135, 87–98.

    Article  Google Scholar 

  • Carreras, J. and Druguet, E. (1994) Structural zonation as a result of inhomogeneous non-coaxial deformation and its control of syntectonic intrusions: an example from the Cap de Creus area (eastern-Pyrenees). Journal of Structural Geology, 16, 1525–1534.

    Article  Google Scholar 

  • Carreras, J. and Garcia Celma, A. (1982) Quartz c-axis fabric variation at the margins of a shear zone developed in schists from Cap de Creus (Spain). Acta geol. Hisp., 17, 137–149.

    Google Scholar 

  • Carreras, J. and Ortuño, F. (1990) Fundamento geométrico y cinemático de la modelización teórica y experimental de deformaciones no-coaxiales. Acta geol. Hisp., 25, 237–259.

    Google Scholar 

  • Carreras, J., Estrada, A. and White, S. (1977) The effects of folding on the c-axis fabrics of a quartz-mylonite. Tectonophysics, 39, 3–24.

    Article  Google Scholar 

  • Cobbold, P.R., Cosgrove, J.W. and Summers, J.M.S. (1971) The development of internal structures in deformed anisotropic rocks. Tectonophysics, 12, 23–53.

    Article  Google Scholar 

  • Cosgrove, J.W. (1976) The formation of crenulation cleavage. Journal of the Geological Society, London, 132, 155–178.

    Article  Google Scholar 

  • Cosgrove, J.W. (1989) Cleavage, folding and the finite strain ellipsoid. Proceedings of the Geological Association, 100, 461–479.

    Article  Google Scholar 

  • De Paor, D.G. (1983) Orthographic analysis of geological structures.-I. Deformation theory. Journal of Structural Geology, 5, 255–277.

    Article  Google Scholar 

  • Escher, A., Escher, J. C. and Warterson, J. (1975) The reorientation of the Kangamiut dyke swarm, West Greenland. Canadian Journal of Earth Sciences, 12, 158, 173.

    Google Scholar 

  • Flinn, D. (1962) On folding during three-dimensional progressive deformation. Journal of the Geological Society, London, 118, 385–433.

    Article  Google Scholar 

  • Ghosh, S.K. (1968) Experiments of buckling of multilayers which permit interlayer gliding. Tectonophysics, 6, 207–250.

    Article  Google Scholar 

  • Ghosh, S.K. and Sengupta, S. (1984) Successive development of plane noncylindrical folds in progressive deformation. Journal of Structural Geology, 6, 703–709.

    Article  Google Scholar 

  • Ghosh, S.K. and Sengupta, S. (1987) Progressive development of structures in a ductile shear zone. Journal of Structural Geology, 9, 277–286.

    Article  Google Scholar 

  • Latham, J.P. (1985) A numerical investigation and geological discussion of the relationship between folding, kinking and faulting. Journal of Structural Geology, 7, 237–249.

    Article  Google Scholar 

  • Lister, G.S. and Williams, P.F. (1983) The partitioning of deformation in flowing rock masses. Tectonophysics, 92, 1–33.

    Article  Google Scholar 

  • Passchier, C.W., Myers, J.S. and Kröner, A. (1990) Field Geology of High-Grade Gneiss Terrains, Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Platt, J.P. (1984) Secondary cleavages in ductile shear zones. Journal of Structural Geology, 6, 439–442.

    Article  Google Scholar 

  • Ramberg, H. (1964) Selective buckling of composite layers with contrasted rheological properties. A theory for simultaneous formation of several orders of folds. Tectonophysics, 1, 307–341.

    Article  Google Scholar 

  • Ramberg, H. and Ghosh, S.K. (1977) Rotation and strain of linear and planar structures in threedimensional progressive deformation. Tectonophysics, 40, 309–357.

    Article  Google Scholar 

  • Ramsay, J.G. (1967) Folding and fracturing of rocks, McGraw Hill, New York.

    Google Scholar 

  • Ramsay, J.G. (1980) shear zone geometry: a review. Journal of Structural Geology, 2, 83–99.

    Article  Google Scholar 

  • Ramsay, J.G. and Allison, I. (1979) Structural analysis of shear zones in an Alpinised Hercynian granite. Schweiz. miner. petrogr. Mitt., 59, 251–279.

    Google Scholar 

  • Ramsay, J.G. and Graham, R.D. (1970) Strain variations in shear belts. Canadian Journal of Earth Sciences, 7, 786–813.

    Article  Google Scholar 

  • Ramsay, J.G. and Huber, M.I. (1987) The techniques of structural geology, vol. 2: folds and fractures, Academic Press, London.

    Google Scholar 

  • Sanderson, D.J. (1973) The development of fold axes oblique to the regional trend. Tectonophysics, 16, 55–70.

    Article  Google Scholar 

  • Sibson, R.H. (1977) Fault rocks and fault mechanisms. Journal of the Geological Society, London, 133, 191–213.

    Article  Google Scholar 

  • Simpson, C, Carreras, J. and Losantos, M. (1982) Inhomogeneous deformation in Roses granodiorite. Acta geol. Hisp., 17, 219–226.

    Google Scholar 

  • Simpson, C. and De Paor, D.G. (1993) Strain and kinematic analysis in general shear zones. Journal of Structural Geology, 15, 1–20.

    Article  Google Scholar 

  • Skjernaa, L. (1980) Rotation and deformation of randomly oriented planar and linear structures in progressive simple shear. Journal of Structural Geology, 2, 101–109.

    Article  Google Scholar 

  • Treagus, J.E. and Treagus, S.H. (1981) Folds and the strain ellipsoid: a general model. Journal of Structural Geology, 3, 1–17.

    Article  Google Scholar 

  • Wheeler, J. (1987) The determination of true shear sense from the deflection of passive markers in shear zones. Journal of the Geological Society, London, 144, 73–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carreras, J. (1997). Shear zones in foliated rocks: geometry and kinematics. In: Sengupta, S. (eds) Evolution of Geological Structures in Micro- to Macro-scales. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5870-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5870-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6481-1

  • Online ISBN: 978-94-011-5870-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics