Skip to main content

Hagfish Haemoglobins

  • Chapter
The Biology of Hagfishes

Summary

The properties of the haemoglobins of this phylogenetically ancient group of animals may shed light on evolution of haemoglobin (Hb) function in vertebrates. In contrast to the tetrameric haemoglobin molecules of other vertebrates, whose O2 affinity is modulated by organic phosphates found in the red blood cells, cyclostome Hbs are monomeric when oxygenated and exhibit no allosteric interaction with phosphates.

Hagfishes possess multiple haemoglobins, involving at least four components. The elec-trophoretic pattern of the haemoglobins varies significantly among individuals of the same species, reflecting polymorphism. The Hb components are essentially monomeric in the ligated (oxygenated) form. Some components aggregate to dimers and tetramers when deoxygenated. Aggregation is favoured by low pH and high protein concentration.

The Bohr effect (pH modulation of the oxygen affinity) in hagfish haemolysate is small and is due to the formation of (low-affinity) oligomers at low pH and (high-affinity) monomers at high pH. Oxygen binding is virtually non-cooperative, although the isolated tetrameric fraction of E. burgeri haemolysate shows haeme-haeme interaction. Bicarbonate ions (formed in the red blood cell by carbonic anhydrase-catalysed hydration of CO2) act as a potent allosteric effector in M. glutinosa haemolysate, causing a significant decrease in the oxygen affinity. This behaviour can be related to the virtual absence of the membrane protein Band III that is implicated in HCO3 -/C1- exchange. This anion-exchanger is similarly lacking in the red cell membranes of E. stoutii, suggesting that bicarbonate sensitivity may be a general character of hagfish haemoglobins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, G.K., Doyle, M.C., Myers, D. and Daugherty, M.A. (1992) Molecular code for cooperativity in hemoglobin. Science, 255, 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, M.E. (1971) Sedimentation equilibrium experiments on the self-association of hemoglobin from the lamprey Petromyzon marinus. J. Biol. Chem., 246, 4800–4806.

    PubMed  CAS  Google Scholar 

  • Andersen, M.E. and Gibson, Q.H. (1971) A kinetic analysis of the binding of oxygen and carbon monoxide to lamprey hemoglobin (Petromyzon marinus and Petromyzon fluviatilis). J. Biol. Biophys., 105, 404–408.

    Google Scholar 

  • Baldwin, J. and Chothia, C. (1979) Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol., 129, 175–220.

    Article  PubMed  CAS  Google Scholar 

  • Bannai, S., Sugita, Y. and Yoneyama, Y. (1972) Studies on hemoglobin from the hagfish Eptatretus burgeri. J. Biol. Chem., 247, 505–5

    PubMed  CAS  Google Scholar 

  • Bartlett, G.R. (1982) Phosphates in red cells of a hagfish and a lamprey. Comp. Biochem. Physiol., 73A, 141–145.

    Article  Google Scholar 

  • Bauer, C., Engels, U. and Paleus, S. (1975) Oxygen binding to hemoglobins of the primitive vertebrate Myxine glutinosa L. Nature, 256, 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, C., Foster, M., Gros, G., Mosca, A., Perrella, M., Rollema, H.R. and Vogel, D. (1981) Analysis of bicarbonate binding to crocodilian haemoglobin. J. Biol Chem., 256, 8429–8435.

    PubMed  CAS  Google Scholar 

  • Briehl, R.W. (1963) The relation between the oxygen equilibrium and aggregation of subunits in lamprey haemoglobin. J. Biol. Chem., 238, 2361–2366.

    CAS  Google Scholar 

  • Brill, S.R., Musch, M.W. and Goldstein, L. (1992) Taurine efflux, Band 3 and erythrocyte volume of the hagfish (Myxine glutinosa) and lamprey (Petromyzon marinus). J. Exp. Zool., 264, 19–25.

    Article  CAS  Google Scholar 

  • Brittain, T. (1991) Cooperativity and allosteric regulation in non-mammalian vertebrate haemoglobins. Comp. Biochem. Physiol, 99B, 731–740.

    CAS  Google Scholar 

  • Brittain, T. and Wells, R.M.G. (1986) Characterization of the changes in the state of aggregation induced by ligand binding in the hemoglobin system of a primitive vertebrate, the hagfish Eptatretus cirrhatus. Comp. Biochem. Physiol., 85A, 785–790.

    Article  CAS  Google Scholar 

  • Brittain, T., O’Brien, A.J., Wells, R.M.G. and Baldwin, J. (1989) A study of the role of subunit aggregation in the expression of co-operative ligand binding in the haemoglobin of the lamprey Mordacia mordax. Comp. Biochem. Physiol., 93B, 549–554.

    CAS  Google Scholar 

  • Chanutin, A. and Curnish, R.R. (1967) Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys., 121, 96.

    Article  PubMed  CAS  Google Scholar 

  • Chiancone, E., Vecchini, P., Verzili, D., Ascoli, F. and Antonini, E. (1981) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. J. Mol. Biol., 152, 577–592.

    Article  PubMed  CAS  Google Scholar 

  • Coates, M.L. (1975) Hemoglobin function in the vertebrates: an evolutionary model. J. Mol. Evol., 6, 285–307.

    Article  PubMed  CAS  Google Scholar 

  • Dohi, Y., Sugita, Y. and Yoneyama, Y. (1973) The self-association and oxygen equilibrium of hemoglobin from the lamprey, Entosphenus japonicus. J. Biol Chem., 248, 2354–2363.

    CAS  Google Scholar 

  • Eaton, W.A. (1980) The relationship between coding sequences and function in haemoglobin. Nature, 284, 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Ellory, J.C., Wolowyk, M.W. and Young, J.D. (1987) Hagfish (Eptatretus stoutii) erythrocytes show minimal chloride transport activity. J. Exp. Biol., 129, 377–383.

    PubMed  CAS  Google Scholar 

  • Fago, A. and Weber, R.E. (1995) The hemoglobin system of the hagfish Myxine glutinosa: aggregation state and functional properties. Biochim. Biophys. Acta, 1249, 109–115.

    Article  PubMed  Google Scholar 

  • Feng, D.-F. and Doolittle, R.F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Fyhn, U.E.H. and Sullivan, B. (1975) Elasmobranch hemoglobins: dimerization and polymerization in various species. Comp. Biochem. Physiol., 50B, 119–129.

    Google Scholar 

  • Goodman, M. (1981) Globin evolution was apparently very rapid in early vertebrates: a reasonable case against the rate-constancy hypothesis. J. Mol. Evol., 17, 114–120.

    Article  PubMed  Google Scholar 

  • Goodman, M., Moore, W. and Matsuda, G. (1975) Darwinian evolution in the genealogy of haemoglobin. Nature, 253, 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, W.A. (1973) Structural effects accompanying ligand change in crystalline lamprey hemoglobin. Biochim. Biophys. Acta, 310, 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, W.A. and Love, W.E. (1971) Structure of lamprey haemoglobin. Nature New Biol., 232, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, W.A., Love, W.E. and Karle, J. (1973) Crystal structure analysis of sea lamprey hemoglobin at 2 Ã… resolution. J. Mol. Biol., 74, 331–361.

    Article  PubMed  CAS  Google Scholar 

  • Honzatko, R.B. and Hendrickson, W.A. (1986) Molecular models for the putative dimer of sea lamprey hemoglobin. Proc. Natl Acad. Sci. USA, 83, 8487–8491.

    Article  PubMed  CAS  Google Scholar 

  • Honzatko, R.B., Hendrickson, W.A. and Love, W.E. (1985) Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus. J. Mol Biol., 184, 147–164.

    Article  PubMed  CAS  Google Scholar 

  • Komiyama, N.H., Miyazaki, G., Tame, J. and Nagai, K. (1995) Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature, 373, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.-L. and Riggs, A. (1970) The amino acid sequence of haemoglobin V from the lamprey Petromyzon marinus. J. Biol Chem., 245, 6149–6169.

    PubMed  CAS  Google Scholar 

  • Li, S.-L. and Riggs, A. (1972) The partial sequence of the first 30 residues from the ammo-terminus of hemoglobin B in the hagfish Eptatretus stoutii: homology with lamprey hemoglobin. J. Mol. Evol., 1, 208–210.

    Article  CAS  Google Scholar 

  • Li, S.-L., Tomita, S. and Riggs, A. (1972) The haemoglobins of the Pacific hagfish Eptatretus stoutii I. Isolation, characterization and oxygen equilibria. Biochim. Biophys. Acta, 278, 344–354.

    Article  PubMed  CAS  Google Scholar 

  • Liljeqvist, G., Braunitzer, G. and Paleus, S. (1979) Hämoglobine, XXVII. Die Sequenz des monomeren Hämoglobins HI von Myxine gluti-nosa L.: ein neuer Hämkomplex: E7 Glutamin, Ell Isoleucin. Hoppe-Seyler’s Z. Physiol. Chem., 360, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Liljeqvist, G., Paleus, S. and Braunitzer, G. (1982) Hemoglobins, XLVIIII. The primary structure of a monomeric hemoglobin from the hagfish, Myxine glutinosa L.: evolutionary aspects and comparative studies of the function with special reference to the heme linkage. J. Mol. Evol., 18, 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa, M. (1993) Haemoglobin function in intact Lampetra fluviatilis erythrocytes. Respir. Physiol., 91, 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa, M. and Matsoff, L. (1992) Effects of oxygen saturation on the CO2 transport properties of Lampetra red cells. Respir. Physiol., 87, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa, M. and Weber, R.E. (1993) Gas transport in lamprey erythrocytes, in The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life (ed. J.E.P.W. Bicudo), CRC Press, Boca Raton, pp. 179–187.

    Google Scholar 

  • Nikinmaa, M., Tufts, B.L. and Boutilier, R.G. (1993) Volume and pH regulation in agnathan erythrocytes: comparisons between the hagfish, Myxine glutinosa, and the lampreys, Petromyzon marinus and Lampetra fluviatilis. J. Comp. Physiol. B, 163, 608–613.

    Article  Google Scholar 

  • Ohno, S. and Morrison, M. (1966) Multiple gene loci for the monomeric hemoglobin of the hagfish (Eptatretus stoutii). Science, 154, 1034–1035.

    Article  PubMed  CAS  Google Scholar 

  • Paleus, S., Vesterberg, O. and Liljeqvist, G. (1971) The hemoglobins of Myxine glutinosa L. — I. Preparation and crystallization. Comp. Biochem. Physiol., 39B, 551–557.

    Google Scholar 

  • Perutz, M.F. (1970) Stereochemistry of cooperative effects in haemoglobins. Nature, 228, 726–739.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M.F. (1990) Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Cambridge Univ. Press, Cambridge, pp. 1–101.

    Google Scholar 

  • Perutz, M.F., Steinrauf, L.K., Stockell, A. and Bangham, A.D. (1959) Chemical and crystallographic study of the two fractions of adult horse haemoglobin. J. Mol. Biol., 1, 402–404.

    Article  CAS  Google Scholar 

  • Royer, W.E. (1994) High-resolution crystallo-graphic analysis of a cooperative dimeric hemoglobin. J. Mol. Biol., 235, 657–681.

    Article  PubMed  CAS  Google Scholar 

  • Royer, W.E, Heard, K.S., Harrington, D.J. and Chiancone, E. (1995) The 2.0 Ã… crystal structure of Scapharca tetrameric haemoglobin: cooperative dimers within an allosteric tetramer. J. Mol. Biol., 253, 168–186.

    Article  PubMed  CAS  Google Scholar 

  • Tufts, B.L. and Boutilier, R.G. (1990) CO2 transport of the blood of a primitive vertebrate, Myxine glutinosa (L.). Exp. Biol., 48, 341–347.

    PubMed  CAS  Google Scholar 

  • Wells, R.M.G., Foster, M.E., Davison, W., Taylor, H.H., Davie, P.S. and Satchell, G.H. (1986) Blood oxygen transport in the free-swimming hagfish, Eptatretus cirrhatus. J. Exp. Biol., 123, 43–53.

    PubMed  CAS  Google Scholar 

  • Wells, R.M.G. and Foster, M.E. (1989) Dependence of blood viscosity on haematocrit and shear rate in a primitive vertebrate. J. Exp. Biol., 145, 483–487.

    Google Scholar 

  • Weber, R.E. (1990) Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates, in Animal Nutrition and Transport Processes, Vol. 2: Transport, Respiration and Excretion: Comparative and Environmental Aspects (eds J.P. Truchot and B. Lahlou). Comp. Physiol Basel, Karger, pp. 58–75.

    Google Scholar 

  • Weber, R.E. and Jensen, F.B. (1988) Functional adaptations in hemoglobin from ectothermic vertebrates. Ann. Rev. Physiol., 50, 161–179.

    Article  CAS  Google Scholar 

  • Zelenick, M., Rudloff, V. and Braunitzer, G. (1979) Hemoglobins, XXX. The amino acid sequence of the monomeric hemoglobin from Lampetra fluviatilis. Hoppe-Seyle’s Z. Physiol Chem., 360, 1879–1894.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fago, A., Weber, R.E. (1998). Hagfish Haemoglobins. In: The Biology of Hagfishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5834-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5834-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6465-1

  • Online ISBN: 978-94-011-5834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics