Skip to main content

Transport of Bicarbonate, other Ions and Substrates Across the Red Blood Cell Membrane of Hagfishes

  • Chapter
The Biology of Hagfishes

Summary

We review here the membrane transport studies that have appeared for the red cells of hagfishes Myxine glutinosa and Eptatretus stoutii. In the first part the transport of substrates of energy metabolism across the red blood cell membrane is considered. Hagfish red cells possess highly efficient transport systems for glucose, pyruvate and several amino acids. In the case of glucose, this property may be related to the animal’s hypoxia tolerance and its capacity for anaerobic glycolysis. Transport systems for small inorganic ions include the Na+, K+-ATPase and a K+-C1- symport requiring the presence of Na+. A striking feature is the absence of a Cl--HCO3 --exchanger, which constitutes in almost all red cells, except those of hagfishes and lampreys, the major pathway for Cl- and for HCO3 -. Consequently, Cl- permeability in hagfish red cells is orders of magnitude lower than in mammalian and most other red cells. We report our mass spectrometric determinations of hagfish red blood cell permeability for HCO3 - and find its value to be not significantly different from zero. This implies that CO2 transport in hagfish blood operates quite differently from that in the blood of most other species. Hagfish red cells, due to the presence of intracellular haemoglobin and carbonic anhydrase, can rapidly convert the CO2 taken up to HCO3 - and H+, but they cannot transfer most of the HCO3 - to the plasma, as red cells of most species do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, C. and Goetz, K.G. (1985) H+ and Cl- ion equilibrium across the red cell membrane in the carp. Respiration Physiology, 61(2), 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, C., Engels, U. and Paleus, S. (1975) Oxygen binding to haemoglobins of the primitive vertebrate Myxine glutinosa L. Nature, 256(5512), 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Berglund, L., Carlsson, U. and Kjellstroem, B. (1980) Cyclostome carbonic anhydrase. Purification and some properties of the enzyme from erythrocytes of lamprey. Acta Chemica Scandinavica, Series B: Organic Chemistry and Biochemistry, 34(3), 227–228.

    Article  CAS  Google Scholar 

  • Boutilier, R.G. and Ferguson, R.A. (1989) Nucleated red cell function: metabolism and pH regulation. Canadian Journal of Zoology, 67, 2986–2993.

    Article  CAS  Google Scholar 

  • Brahm, J. (1977) Temperature-dependent changes of chloride transport kinetics in human red cells. Journal of General Physiology, 70, 283–306.

    Article  PubMed  CAS  Google Scholar 

  • Brill, S.R., Musch, M.W. and Goldstein, L. (1992) Taurine efflux, band 3, and erythrocyte volume of the hagfish (Myxine glutinosa) and lamprey (Petromyzon marinus). Journal of Experimental Zoology, 264, 19–25.

    Article  CAS  Google Scholar 

  • Carlsson, U., Kjellström, B. and Antonsson, B. (1980) Purification and properties of cyclostome carbonic anhydrase from erythrocytes of hagfish. Biochimica et Biophysica Acta, 612, 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Cholette, C. and Gagnon, A. (1973) Isosmotic adaptation in Myxine glutinosa L. — II. Variations of the free arnino acids, trimethylamine oxide and potassium of the blood and muscle cells. Comparative Biochemistry and Physiology A —Comparative Physiology, 45A(4), 1009–1021.

    Article  Google Scholar 

  • Deuticke, B., Rickert, I. and Beyer, E. (1978) Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochimica et Biophysica Acta, 507, 137–155.

    Article  PubMed  CAS  Google Scholar 

  • Ellory, J.C. and Wolowyk, M.W. (1991) Evidence for bumetanide-sensitive, Na+-dependent, partial Na-K-Cl co-transport in red blood cells of a primitive fish. Canadian Journal of Physiology and Pharmacology, 69, 588–591.

    Article  PubMed  CAS  Google Scholar 

  • Ellory, J.C., Wolowyk, M.W., and Young, J.D. (1987) Hagfish (Eptatretus stoutii) erythrocytes show minimal chloride transport activity. Journal of Experimental Biology, 129, 377–383.

    PubMed  CAS  Google Scholar 

  • Evans, D.H. (1984) Gill Na+/H+ and Cl-/HCO3-exchange systems evolved before the vertebrates entered fresh water. Journal of Experimental Biology, 113, 465–469.

    PubMed  CAS  Google Scholar 

  • Fincham, D.A., Wolowyk, M.W. and Young, J.D. (1990) Characterisation of amino acid transport in red blood cells of a primitive vertebrate, the Pacific hagfish (Eptatretus stoutii). Journal of Experimental Biology, 154, 355–370.

    CAS  Google Scholar 

  • Fincham, D.A., Wolowyk, M.W. and Young, J.D. (1991) Nucleoside uptake by red blood cells from a primitive vertebrate, the Pacific hagfish (Eptatretus stoutii), is mediated by a nitrobenzylthioinosine-insensitive transport system. Biochimica et Biophysica Acta, 1069(1), 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Gorkin, A.A. (1970) In-vitro uptake of amino-acids by erthrocytes of the hagfish Eptatretus stoutii. Physiologist, 13(3), 210.

    Google Scholar 

  • Gros, G. (1991) Mechanisms of CO2 transport in vertebrates. Verhandlungen der Deutschen Zoologischen Gesellschaft, 84, 213–230.

    Google Scholar 

  • Heming, T.A., Randall, D.J., Boutilier, R.G. et al. (1986) Ionic equilibria in red blood cells of rainbow trout (Salmo gairdneri): Cl-, HCO3 - and H+. Respiration Physiology, 65, 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Ingermann, R.L., Hall, R.E., Bissonette et al. (1984) Monosaccharide transport into erythrocytes of the Pacific hagfish Eptatretus stoutii. Molecular Physiology, 6(5-6), 311–320.

    CAS  Google Scholar 

  • Ingermann, R.L., Bissonnette, J.M. and Hall, R.E. (1985) Sugar uptake by red blood cells, in Circulation, Respiration, and Metabolism. Current Comparative Approaches (ed. R. Gilles), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 290–300.

    Chapter  Google Scholar 

  • Itada, N. and Forster, R.E. (1977) Carbonic anhydrase activity in intact red blood cells measured with 18O exchange. Journal of Biological Chemistry, 252(11), 3881–3890.

    PubMed  CAS  Google Scholar 

  • Jacobs, M.H. and Stewart, D.R. (1942) The role of carbonic anhydrase in certain ion exchanges involving the erythrocyte. Journal of General Physiology, 25, 539–552.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M.A., Hays, L. and Hays, R.M. (1974) Evolution of a facilitated diffusion pathway for amides in the erythrocyte. American Journal of Physiology, 226, 1327–1332.

    PubMed  CAS  Google Scholar 

  • Macey, R.I. and Yousef, L.W. (1988) Osmotic stability of red cells in renal circulation requires rapid urea transport. American Journal of Physiology, 254, C669–74.

    PubMed  CAS  Google Scholar 

  • Mannuzzu, L.M., Moronne, M.M. and Macey, R.I. (1993) Estimate of the number of urea transport sites in erythrocyte ghosts using a hydrophobic mercurial. Journal of Membrane Biology, 133, 85–97.

    PubMed  CAS  Google Scholar 

  • Maren, T.H., Friedland, B.R. and Rittmaster, R.S. (1980) Kinetic properties of primitive vertebrate carbonic anhydrases. Comparative Biochemistry and Physiology B — Comparative Biochemistry, 67B, 69–74.

    Article  CAS  Google Scholar 

  • Nikinmaa, M. (1986) Red cell pH of lamprey Lampetra-fluviatilis is actively regulated. Journal of Comparative Physiology B — Biochemical Systemic and Environmental Physiology, 156(5), 747–750.

    Article  CAS  Google Scholar 

  • Nikinmaa, M. and Railo, E. (1987) Anion movements across lamprey (Lampetra fluviatilis) red cell membrane. Biochimica et Biophysica Acta, 899(1), 134–136.

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa, M. and Tiihonen, K. (1994) Substrate transport and utilization in fish erythrocytes. Acta Physiologica Scandinavica, 152, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Obaid, A.L., Critz, A.M. and Crandall, E.D. (1979) Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes. American journal of Physiology, 273(3), R132–8.

    Google Scholar 

  • Olives, B., Mattel, M.-G., Huet, M. et al. (1995) Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. Journal of Biological Chemistry, 270, 15607–10.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, S.T. and Asai, H. (1985) Lamprey erythrocytes lack glycoproteins and anion transport. Comparative Biochemistry and Physiology B — Comparative Biochemistry, 81B(2), 405–408.

    Article  CAS  Google Scholar 

  • Sands, J.M., Gargus, J.J., Fröhlich, O. et al. (1992) Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. Journal of the American Society of Nephrology, 2, 1689–1696.

    PubMed  CAS  Google Scholar 

  • Tiihonen, K. and Nikinmaa, M. (1991) D-glucose permeability in river lamprey (Lampetra fluviatilis) and carp (Cyprinus carpio) erythrocytes. Comparative Biochemistry and Physiology, 100(3), 581–584.

    Article  PubMed  CAS  Google Scholar 

  • Tiihonen, K. and Nikinmaa, M. (1993) Membrane permeability and utilization of L-lactate and pyruvate in carp red blood cells. Journal of Experimental Biology, 178, 161–172.

    CAS  Google Scholar 

  • Tiihonen, K., Yao, S.Y.M., Nikinmaa, M. et al. (1993) Erythrocytes from the Pacific hagfish (Eptatretus stoutii) transport pyruvate by a concentrative Na+-dependent mechanism insensitive to inhibition by alpha-cyano-4-hydrox-ycinnamate. Biochemistry and Cell Biology, 71, Axv.

    Google Scholar 

  • Tufts, B.L. and Boutilier, R.G. (1989) The absence of rapid chloride-bicarbonate exchange in lamprey erythrocytes: Implications for carbon dioxide transport and ion distribution between plasma and erythrocytes in the blood of Petromyzon marinus. Journal of Experimental Biology, 144, 565–576.

    Google Scholar 

  • Tufts, B.L. and Boutilier, R.G. (1990a) CO2 transport in agnathan blood: evidence of erythrocyte Cl-/HCO3 - exchange limitations. Respiration Physiology, 80, 335–347.

    Article  PubMed  CAS  Google Scholar 

  • Tufts, B.L. and Boutilier, R.G. (1990b) CO2 transport properties of the blood of a primitive vertebrate, Myxine glutinosa (L.). Experimental Biology, 48(6), 341–347.

    PubMed  CAS  Google Scholar 

  • Young, J.D., Yao, S.Y.-M., Tse, C.M. et al. (1994) Functional and molecular characteristics of a primitive vertebrate glucose transporter: studies of glucose transport by erythrocytes from the Pacific hagfish (Eptatretus stoutii). Journal of Experimental Biology, 186, 24–41.

    Google Scholar 

  • Zhang, Z.H. and Solomon, A.K. (1992) Effect of pCMBS on anion transport in human red cell membranes. Biochimica et Biophysica Acta, 1106, 31–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peters, T., Gros, G. (1998). Transport of Bicarbonate, other Ions and Substrates Across the Red Blood Cell Membrane of Hagfishes. In: The Biology of Hagfishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5834-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5834-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6465-1

  • Online ISBN: 978-94-011-5834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics