Skip to main content

Are rice chromosomes components of a holocentric chromosome ancestor?

  • Chapter
Oryza: From Molecule to Plant

Comparative genomics reveals that cereal genomes are composed of similar genomic building blocks (linkage blocks). By stacking these blocks in a unique order, it is possible to construct a single ancestral ‘chromosome’ which can be cleaved to give the basic structure of the 56 different chromosomes found in wheat, rice, maize, sorghum, millet and sugarcane. The borders of linkage blocks are defined by cereal centromeric and telomeric sites. However, a number of studies have shown that telomeric heterochromatin has neocentromeric activity, implying that linkage blocks are in fact defined by centromeric-like sites with conserved sequences. The structure of the ancestral cereal genome thus resembles a holocentric chromosome, which is the chromosome structure shared by the closest relatives of the Gramineae, the Cypericeae and Juncaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nordenskiold H: Tetrad analysis and course of meiosis in three hybrids of Luzula campestris. Hereditas 47: 203–238 (1961).

    Article  Google Scholar 

  2. Wolf KH, Gouy M, Yang Y-W, Sharp PM, Li WH: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205 (1989).

    Article  Google Scholar 

  3. Martin W, Gierl A, Saedler H: Molecular evidence for precretaceous angiosperms origins. Nature 339: 46–48 (1989).

    Article  CAS  Google Scholar 

  4. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD: Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85: 673–680 (1993).

    Article  CAS  Google Scholar 

  5. Devos KM, Millan T, Gale M: Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet 85: 784–792 (1993).

    CAS  Google Scholar 

  6. Whitkus R, Doebley J, Lee M: Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130 (1992).

    PubMed  CAS  Google Scholar 

  7. Melake Berhan A, Hulbert SH, Butler LG, Bennetzen JL: Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86: 598–604 (1993).

    Article  Google Scholar 

  8. Periera MG, Lee M, Bramel-Cox P, Woodman N, Doebley J, Whitkus R: Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236–243 (1994).

    Article  Google Scholar 

  9. Chittenden LM, Schertz KF, Lin Y-R, Wing RA, Paterson AH: A detailed RFLP map of Sorghum biocolor x S. Propinquum suggests ancestral duplication of the sorghum chromosomes or chromosomal segments. Theor Appl Genet 87: 925–933 (1994).

    Article  CAS  Google Scholar 

  10. Grivet L, D’Hont A, Dufour P, Hamon P, Rogues D, Glaszmann JC: Comparative genome mapping of sugarcane with other species with the Andropogoneaetribe. Heredity 73: 500–508 (1994).

    Article  CAS  Google Scholar 

  11. Grivet L: Marquage moleculaire chez la canne a sucre (Saccharum spp.); decomposition d’une structure genetique complexe et application a l’amelioration varietale. PhD Thesis, University de Paris XI Orsay (1995).

    Google Scholar 

  12. Ahn S, Tanksley SD: Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90: 7980–7984 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. Ahn S, Anderson JA, Sorrells ME, Tanksley SD: Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241: 483–490 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M: Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278 (1994).

    Article  CAS  Google Scholar 

  15. Devos K, Chao S, Li QY, Simonetti MC, Gale MD: Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138: 1287–1292 (1994).

    PubMed  CAS  Google Scholar 

  16. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R: Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38: 45–59 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Kilian A, Kudma DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T: Rice-barley synteny and its application to saturation mapping of barley Rpg1 region. Nucleic Acids Res 23: 2729–2733 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y, Moore G: Conservation of fine-scale DNA marker order in the genome of rice and the Triticeae. Nucleic Acids Res 23: 2724–2728 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. Foote T, Roberts M, Kurata N, Sasaki T, Moore G: Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Submitted.

    Google Scholar 

  20. Chen M, SanMiguel P, De Oliveira AC, Woo S-S, Zhang H et al.: Microcolinearity in sh2-homologous regions of maize, rice and sorghum genomes. Proc Natl Acad Sci (1997) in press.

    Google Scholar 

  21. Moore G, Devos KM, Wang Z, Gale MD: Cereal Genome Evolution, Grasses, line up and form a circle. Current Biology 5: 737–739 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M: Was there a single ancestral cereal chromosome? Trends Genet 11: 81–82 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. Singh K, Ishii T, Parco A, Huang N, Brar DS, Khush GS: Centromere mapping and orientiation of the molecular linkage map of rice. Proc Natl Acad Sci USA 93: 6163–6168 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Moore G, Roberts M, Aragón-Alcaide L, Foote T: Centromeric sites and cereal chromosome evolution. Chromosoma in press (1997).

    Google Scholar 

  25. Lima-de-Faria A: Molecular evolution and organisation of chromosomes. Amsterdam Elsevier (1983).

    Google Scholar 

  26. Aragón-Alcaide L, Miller TE, Schwarzacher T, Reader SM, Moore G: A Cereal Centomeric sequence. Chromosoma 105: 261–268 (1996).

    Article  PubMed  Google Scholar 

  27. Aragón-Alcaide L, Reader SM, Shaw PJ, Beven AF, Miller TE, Moore G: Dynamics of homologous chromosome association during pre-meiotic interphase. Submitted.

    Google Scholar 

  28. Holm PB: Chromosome pairing and chiasma formation in allohexploid wheat, Triticum aestivum analysed by spreading of meiotic nuclei. Carlsberg Res Commun 51: 239–294 (1986).

    Article  Google Scholar 

  29. Holm PB: Chromosome pairing and synaptonemal complex formation in Hexaploid wheat, monoisosomic and disosomic for the long arm of chromosome 5B. Carlsberg Res Commun 53: 111–133 (1986).

    Article  Google Scholar 

  30. Holm PB: Chromosome pairing and synaptonemal complex formation in hexaploid wheat nullisomic for chromosome 513. Carlsberg Res Commun 53: 91–110 (1986).

    Article  Google Scholar 

  31. Sears ER: Genetic control of chromosome pairing in wheat. Ann Rev Genet 10: 31–51 (1976).

    Article  PubMed  CAS  Google Scholar 

  32. Aragón-Alcaide L, Reader SM, Miller TE, Moore G: Centromere behaviour in wheat with high and low homoeologous chromosome pairing. Chromosoma in press (1997).

    Google Scholar 

  33. Dover GA, Riley R: The effect of spindle inhibitors applied before meiosis on meiotic chromosome pairing. J Cell Sci 12: 143–161 (1973).

    PubMed  CAS  Google Scholar 

  34. Dubcousky J, Luo MC, Dvorak J: Differentiation between homoeologous chromosomes 1A of wheat and Al (M) of Triticum monococcum and its recognition by thw wheat Ph1 locus. Proc Natl Acad Sci USA 92: 6645–5547 (1995).

    Article  Google Scholar 

  35. Luo MC, Dubcousky J, Dvorak J: Recognition of homeology by wheat Ph1 locus. Genetics 144: 1195–1203 (1996).

    PubMed  CAS  Google Scholar 

  36. Cox EC: Recombination, mutation and the origin of species. BioEssays 17: 747–749 (1995).

    CAS  Google Scholar 

  37. Moore G: Cereal genome evolution: pastoral pursuits with lego genomes. Curr Opin Genet Dev 5: 717–724 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takuji Sasaki Graham Moore

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moore, G., Aragón-Alcaide, L., Roberts, M., Reader, S., Miller, T., Foote, T. (1997). Are rice chromosomes components of a holocentric chromosome ancestor?. In: Sasaki, T., Moore, G. (eds) Oryza: From Molecule to Plant. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5794-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5794-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6446-0

  • Online ISBN: 978-94-011-5794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics