Skip to main content

Influence of Plants on Redox Potential and Methane Production in Water-Saturated Soil

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 120))

Abstract

Pressurized ventilation, which increases the oxygen supply of the roots and rhizomes, has been detected on three waterlilies (Nymphaea capensis, N. lotus var. lotus, N. odorata), two Japanese swamp grasses (Ischaemumaristatum var. glaucum, Isachne globosa), and three willow species (Salix alba, S. cinerea,S. viminalis). All of these plant species are able to generate sufficient convective gas flow to meet the oxygen demand of their organs buried in the anoxic soil. Excretion of surplus oxygen maintains higher redox potential in the tussock of I. aristatum and also in the rhizosphere of the waterlilies and willows, thereby protecting the root system from phytotoxin uptake. High methane production rates in reduced sediments contrast to the significantly lower rates of methane formation in the oxidized rhizosphere surrounding N. lotus roots. This is an example of how wetland plants use pressurized ventilation to alter microbial activities in their habitat. Pressurized ventilation seems to provide these plant species with a competetive advantage over species that rely on diffusive aeration of their submerged parts, thereby enabling them to become dominant weeds in their aquatic ecosystems or in wet meadows of nature reserves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong J. & W. Armstrong, 1988. Phragmites australis-a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol. 108: 373–382.

    Article  Google Scholar 

  • Armstrong J. & W. Armstrong, 1990. Pathways and mechanisms of oxygen transport in Phragmites australis. In P. F. Cooper & B. C. Findlater (eds), The use of constructed wetlands in water pollution control. Pergamon, Oxford: 529–533.

    Google Scholar 

  • Armstrong J. & W. Armstrong, 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat. Bot. 39: 75–88.

    Article  Google Scholar 

  • Armstrong, W., 1965. Studies relating to the survival of plants in waterlogged soils. Ph.D. Thesis, University of Hull, UK.

    Google Scholar 

  • Armstrong, W., 1968. Oxygen diffusion from roots of woody species. Physiol. Plant. 21: 539–543.

    Article  Google Scholar 

  • Armstrong, W., 1969. Rhizosphere oxidation in rice: An analysis of intervarietal differences in oxygen flux from the roots. Physiol. Plant. 22: 296–303.

    Article  CAS  Google Scholar 

  • Armstrong, W., 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192–197.

    Article  Google Scholar 

  • Armstrong, W., 1979. Aeration in higher plants. In H. W. Woolhouse (ed.), Advances in Botanical Research. Vol. 7. Academic Press, London: 225–332.

    Google Scholar 

  • Beckett, P. M, W. Armstrong, S. H. F. W. Justin & J. Armstrong, 1988. On the relative importance of convective and diffusive gas flow in plant aeration. New. Phytol. 10: 463–468.

    Article  Google Scholar 

  • Brix H., B. K. Sorrell & P. T. Orr, 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37; 1420–1433.

    Article  Google Scholar 

  • Dacey, J. W. H., 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017–1019.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., 1981. Pressurized ventilation in the yellow waterlily. Ecology 62: 1137–1147.

    Article  Google Scholar 

  • Dacey, J. W. H., 1987. Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiol. 85: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Delieu T. & D. A. Walker, 1972. An improved cathode for the measurement of photosynthetic oxygen evolution by isolated chloroplasts. New Phytol. 71: 201–225.

    Article  CAS  Google Scholar 

  • Flessa H. & W. R. Fischer, 1992a. Redoxprozesse in der Rhizosphäre von Land-und Sumpfpflanzen. Z. Pflanzenernähr. Bodenk. 155: 373–378.

    Article  CAS  Google Scholar 

  • Flessa H. & W. R. Fischer, 1992b. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and soil 143: 55–60.

    Article  CAS  Google Scholar 

  • Grosse W. & C. Bauch, 1991. Gas transfer in floating-leaved plants. Vegetatio 97: 85–192.

    Article  Google Scholar 

  • Grosse W. & J. Mevi-Schuetz, 1987. A beneficial gas transport system in Nymphoides peltata. Am. J. Bot. 74: 947–952.

    Article  Google Scholar 

  • Grosse W. & P. Schroeder, 1984. Oxygen supply of roots by gas transport in alder-trees. Z. Naturforsch. 39C: 1186–1188.

    CAS  Google Scholar 

  • Grosse W. & P. Schroeder, 1985. Aeration of roots and chloroplast free tissues of trees. Ber. Deutsch. Bot. Ges. 98: 311–318.

    Google Scholar 

  • Grosse W., H. B. Buechel & S. Lattermann, 1994. Root aeration in wetland trees and its ecophysiological significance. In A. D. Laderman (ed.), Coastally Restricted Forests, Oxford University Press, New York (in press).

    Google Scholar 

  • Grosse W., H. B. Buechel & H. Tiebel, 1991. Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89–98.

    Article  Google Scholar 

  • Grosse W., J. Frye & S. Lattermann, 1992. Root aeration in wetland trees by pressurized gas transport. Tree Physiol. 10: 285–295.

    Article  PubMed  Google Scholar 

  • Grosse W., A. Schulte & H. Fujita, 1993. Pressurized gas transport in two Japanese alder species in relation to their natural habitats. Ecol. Res. 8: 151–158.

    Article  Google Scholar 

  • Mevi-Schutz J. & W. Grosse, 1988. A two-way gas transport system in Nelumbo nucifera. Plant, Cell and Envir. 11: 27–34.

    Article  Google Scholar 

  • Lattermann, S., 1994. Strukturelle und physiologische Anpassungen von Alnus glutinosa (L.) Gaertn. an Flutung und Bodenanaerobiose. Ph.D. Thesis. University of Cologne, Germany.

    Google Scholar 

  • Ohno, N., 1910. Über lebhafte Gasausscheidung aus den Blättern von Nelumbo nucifera Gaertn. Z. PflanzenPhysiol. 2: 641–664.

    Google Scholar 

  • Schroeder, P., 1989. Characterization of a thermo-osmotic gas transport mechanism in Alnus glutinosa (L.) Gaertn. Trees 3: 38–44.

    Google Scholar 

  • Schroeder P., W. Grosse & D. Woermann, 1986. Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J. Exp. Bot. 37: 1450–1461.

    Article  Google Scholar 

  • Yabe K. & M. Numata, 1984. Ecological studies of the Mobara-Yatsumi marsh. Main physical and chemical factors controlling the marsh ecosystem. Jap. J. Ecol. 34: 173–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. M. Caffrey P. R. F. Barrett K. J. Murphy P. M. Wade

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Grosse, W., Jovy, K., Tiebel, H. (1996). Influence of Plants on Redox Potential and Methane Production in Water-Saturated Soil. In: Caffrey, J.M., Barrett, P.R.F., Murphy, K.J., Wade, P.M. (eds) Management and Ecology of Freshwater Plants. Developments in Hydrobiology, vol 120. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5782-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5782-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6441-5

  • Online ISBN: 978-94-011-5782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics