Skip to main content

Effects of Calcium, Magnesium, Zinc, and Iron on Nickel Carcinogenesis: Inhibition Versus Enhancement

  • Chapter
Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

Abstract

This paper reviews the investigations on interactions between nickel and calcium, magnesium, zinc, or iron, aimed at elucidation of the mechanisms of nickel carcinogenesis and its prevention. Depending on the animal species, target tissues, particular metal compounds, and routes of administration, the divalent metals magnesium, calcium, or zinc, inhibit or have no effect on nickel carcinogenesis, whereas trivalent iron can either inhibit or enhance it. The molecular mechanisms involved in the observed effects are likely to include interactions at the tissue and cellular metal transport levels. They may, as well, depend on binding competition among metal ions at chromatin (e.g., DNA, histones, transcription factors, DNA repair enzymes) and other regulatory molecules in both the target cells, which give rise to tumors, and immune cells, which are responsible for controlling tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nordberg, F. and Andersen, O. (1981) Metal carcinogenesis: Enhancement, inhibition, Environ. Health Perspect. 40, 65–81.

    Article  CAS  Google Scholar 

  2. Kasprzak, K.S. and Waalkes, M.P. (1986) The role of calcium, magnesium, and zinc in carcinogenesis, in L.A. Poirier, P.M. Newbeme, and M.W. Pariza (eds.), Essential Nutrients in Carcinogenesis, Plenum, New York, pp. 497–515.

    Chapter  Google Scholar 

  3. Rodriguez, R.E. and Kasprzak, K.S. (1989) Antagonists to metal carcinogens, J. Am. Coll. Toxicol. 8, 1265–1269.

    Article  Google Scholar 

  4. Kasprzak, K.S. (1990) Metal interactions in nickel, cadmium, and lead carcinogenesis, in E.C. Foulkes (ed.), Biological Effects of Heavy Metals. II. Metal Carcinogenesis, CRC Press, Boca Raton, pp. 173–189.

    Google Scholar 

  5. Kasprzak, K.S. and Rodriguez, R.E. (1992) Inhibitory effects of zinc, magnesium, and iron on nickel subsulfide carcinogenesis in rat skeletal muscle, in E. Nieboer and J.O. Nriagu (eds.), Nickel in Human Health: Current Perspectives, J. Wiley, New York, pp. 545–559.

    Google Scholar 

  6. Kenney, M.A. and McCoy, H. (1992) A review of biointeractions of Ni and Mg. I. Enzyme, endocrine, transport and skeletal systems, Magnesium Res. 5, 215–222.

    CAS  Google Scholar 

  7. Littlefield, N.A. and Poirier, L.A. (1992) Carcinogenicity interactions between nickel and magnesium, in J. Anastassopoulou, P. Collery, J.C. Etienne, and T. Theophanides(eds.), Metal Ions in Biology and Medicine, Vol. 2, J. Libbey Eurotext, Paris, pp. 157–162.

    Google Scholar 

  8. Clarkson, T.W. (1993) Molecular and ionic mimicry of toxic metals, Annu. Rev. Pharmacol. Toxicol. 32, 545–571.

    Article  Google Scholar 

  9. Luo, S.-Q., Plowman, M.C., Hopfer, S.M., and Sunderman, F.W., Jr. (1993) Mg2+ deprivation enhances and Mg2+ supplementation diminishes the embryotoxic and teratogenic effects of Ni2+, Co2+, Zn2+, and Cd2+ for frog embryos in the FETAX assay, Ann. Clin. Lab. Sci. 23, 121–129.

    CAS  Google Scholar 

  10. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Vol. 49 (1990) Chromium, Nickel and Welding, IARC, Lyon.

    Google Scholar 

  11. Sunderman, F.W., Jr., Lau, T.J., and Cralley, L.J. (1974) Inhibitory effect of manganese upon muscle tumorigenesis by nickel subsulfide, Cancer Res. 34, 92–98.

    CAS  Google Scholar 

  12. Sunderman, F.W., Jr., Kasprzak, K.S., Lau, T.J., Minghetti, P.P., Maenza, R.M., Becker, N., Onkelinx, C., and Goldblatt, P.J. (1976) Effects of manganese on carcinogenicity and metabolism of nickel subsulfide, Cancer Res. 36, 1790–1800.

    CAS  Google Scholar 

  13. Survderman, F.W., Jr. and McCully, K.S. (1983) Effects of manganese compounds on carcinogenicity of nickel subsulfide in rats, Carcinogenesis, 4, 461–465.

    Article  Google Scholar 

  14. Kasprzak, K.S., Waalkes, M P., and Poirier, L.A. (1986) Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro, Toxicol. Appl. Pharmacol. 82, 336–3

    Article  CAS  Google Scholar 

  15. Sunderman, F.W., Jr. (1984) Recent advances in metal carcinogenesis, Ann. Clin. Lab. Sci. 14, 93422.

    Google Scholar 

  16. Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1987) Effects of essential divalent metals on carcinogenicity and metabolism of nickel and cadmium, Biol. Trace Elem. Res. 13, 253–273.

    Article  CAS  Google Scholar 

  17. Poirier, L.A., Theiss, J.C., Arnold, L.J., and Shimkin, M.B. (1984) Inhibition by magnesium and calcium acetates of lead subacetate-and nickel acetate-induced lung tumors in strain A mice, Cancer Res. 44, 1520–1522.

    CAS  Google Scholar 

  18. Kasprzak, K.S. and Poirier, L.A. (1985) Effects of calcium(II) and magnesium(II) on nickel(II) uptake and stimulation of thymidine incorporation into DNA in the lungs of strain A mice, Carcinogenesis 6, 1819–1821.

    Article  CAS  Google Scholar 

  19. Kasprzak, K.S., Quander, R.V., and Poirier, L.A. (1985) Effects of calcium and magnesium salts on nickel subsulfide carcinogenicity in Fischer rats, Carcinogenesis 6, 1161–1166.

    Article  CAS  Google Scholar 

  20. Kasprzak, K.S., Ward, J.M., Poirier, L.A., Reichardt, D.A., Denn, A.C., III, and Reynolds, C.W. (1987) Nickel-magnesium interactions in carcinogenesis: dose-effects and involvement of natural killer cells, Carcinogenesis 8, 1005–1 Oil.

    Article  CAS  Google Scholar 

  21. Kasprzak, K.S., Diwan, B.A., and Rice, J.M. (1994) Iron accelerates while magnesium inhibits nickel-induced carcinogenesis in the rat kidney, Toxicology 90, 129–140.

    Article  CAS  Google Scholar 

  22. Sunderman, F.W., Jr. and Hopfer, S.M. (1983) Correlation between the carcinogenic activities of nickel compounds and their potencies for stimulating erythropoiesis in rats, in B. Sarkar (ed.), Biological Aspects of Metals and Metal-Related Diseases, Raven Press, New York, pp. 171–181.

    Google Scholar 

  23. Miki, H., Kasprzak, K.S., Kenney, S., and Heine, U.I. (1987) Inhibition of intercellular communication by nickel(II): Antagonistic effect of magnesium, Carcinogenesis 8, 1757–1760.

    Article  CAS  Google Scholar 

  24. Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1986) Effects of magnesium acetate on the toxicity of nickelous acetate in rats, Toxicology 42, 57–68.

    Article  CAS  Google Scholar 

  25. Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1986) Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro, Toxicol. Appl. Pharmacol. 82, 336–343.

    Article  CAS  Google Scholar 

  26. Smialowicz, R.J., Rogers, R.R., Riddle, M.M., and Stott, G.A. (1984) Immunologic effects of nickel. I. Suppression of cellular and humoral immunity, Environ. Res. 33, 413–427.

    Article  CAS  Google Scholar 

  27. Smialowicz, R.J., Rogers, R.R., Riddle, M.M., Garner, R.J., Rowe, D.G, and Luebke, R.W. (1985) Immonologic effects of nickel. II. Suppression of natural killer cell activity, Environ. Res. 36, 56–66.

    Article  CAS  Google Scholar 

  28. Benson, J.M., Henderson, R.F., and McClellan, R.O. (1986) Comparative cytotoxicity of four nickel compounds to canine and rodent alveolar macrophages in vitro, J. Toxicol. Environ. Health 19, 105–110.

    Article  CAS  Google Scholar 

  29. Sunderman, F.W., Jr. (1990) Regulation of gene expression by metals: Zinc finger loop domains in transcription factors, hormone receptors, and proteins encoded by oncogenes, in P. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne (eds.), Metal Ions in Biology and Medicine, Vol. 1, J. Libbey Eurotext, Paris, pp. 549–554.

    Google Scholar 

  30. Kasprzak, K.S., Kovatch, R.M., and Poirier, L.A. (1988) Inhibitory effect of zinc on nickel subsulfide carcinogenesis in Fischer rats, Toxicology 52, 253–262.

    Article  CAS  Google Scholar 

  31. Kasprzak, K.S., Waalkes, M.P., Ohshima, M., and Poirier, L.A. (1985) Protective effects of zinc(II) acetate toward the toxicity of nickel(II)acetate in rats, Toxicology 34, 29–41.

    Article  Google Scholar 

  32. Higinbotham, K.G., Rice, J.M., Diwan, B.A., Kasprzak, K.S., Reed, C.D., and Perantoni, A.O. (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Cancer Res. 52, 4747–4751.

    CAS  Google Scholar 

  33. Costa, M. (1991) Molecular mechanisms of nickel carcinogenesis, Annu. Rev. Pharmacol. Toxicol. 31, 321–337.

    Article  CAS  Google Scholar 

  34. Sunderman, F.W., Jr., McCully, K.S., and Hopfer, S.M. (1984) Association between erythrocytosis and renal cancers in rats following intrarenal injection of nickel compounds, Carcinogenesis, 5, 1511–1517.

    Article  CAS  Google Scholar 

  35. Nielsen, F. (1980) Interactions of nickel with essential minerals, in O. Nriagu (ed.), Nickel in the Environment, J. Wiley-Interscience, New York, pp. 611–634.

    Google Scholar 

  36. Sunderman, F.W., Jr. (1983) Organ and species specificity in nickel subsulfide carcinogenesis, in R. Langenbach, S. Nesnow, and J.M. Rice (eds.), Organ and Species Specificity in Chemical Carcinogenesis, Plenum, New York, pp. 107–126.

    Chapter  Google Scholar 

  37. Kasprzak, K.S. (1995) Possible role of oxidative damage in metal-induced carcinogenesis, Cancer Invest. 13, 411–430.

    Article  CAS  Google Scholar 

  38. Misra, M., Rodriguez, R.E., North, S.L., and Kasprzak, K.S. (1991) Nickel-induced renal lipid peroxidation in different strains of mice: concurrence with nickel effect on antioxidant defense systems, Toxicol. Lett. 58, 121–133.

    Article  CAS  Google Scholar 

  39. Rodriguez, R.E., Misra, M., North, S.L., and Kasprzak, K.S. (1991) Nickel-induced lipid peroxidation in the liver of different strains of mice and its relation to nickel effects on antioxidant systems, Toxicol. Lett. 57, 269–281.

    Article  CAS  Google Scholar 

  40. Kasprzak, K.S., Gabryel, P., and Jarczewska, K. (1983) Carcinogenicity of nickel(II)hydroxides and nickel(II) sulfate in Wistar rats and its relation to the in vitro dissolution rates, Carcinogenesis, 4, 275–279.

    Article  CAS  Google Scholar 

  41. Kasprzak, K.S., Kiser, R.F., and Weislow, O.S. (1988) Magnesium counteracts nickel-induced suppression of T lymphocyte response to Concanavalin A, Magnesium 7, 166–172.

    CAS  Google Scholar 

  42. Zeromski, J., Jezewska, E., Sikora, J., and Kasprzak, K.S. (1995) The effect of nickel compounds on immunophenotype and natural killer cell function of normal human lymphocytes, Toxicology 97, 39–48.

    CAS  Google Scholar 

  43. Jaramillo, A. and Sonnenfeld, G. (1992) Potentiation of lymphocyte proliferative responses by nickel sulfide, Oncology 49, 396–406.

    Article  CAS  Google Scholar 

  44. Li, W., Zhao, Y., and Chou, I.N. (1996) Mg2+ antagonism of Ni2+-induced changes in microtubule assembly and cellular thiol homeostasis, Toxicol. Appl. Pharmacol. 136, 101–111.

    Article  CAS  Google Scholar 

  45. Daniel, M.R. (1966) Strain differences in the response of rats to the injection of nickel sulphide, Br. J. Cancer 20, 886–895.

    Article  CAS  Google Scholar 

  46. Corbeil, L.B. (1968) Antigenicity of rhabdomyosarcomas induced by nickel sulphide, Ni3S2, Cancer 21, 184–189.

    Article  CAS  Google Scholar 

  47. Porter, D.W., Nelson, V., and Kasprzak, K.S. (1996) Mechanistic studies on the inhibition by Ni(II) of 8-oxo-2′-deoxyguanosine-5′-triphosphatase (MutT), a nucleotide pool-sanitizing enzyme, Fourth Intl. Symp. Metal Ions Biol. Med., Barcelona, Spain, May, 1996.

    Google Scholar 

  48. Hartwig, A., Schlepegrell, R., and Beyersmann, D. (1992) Interactions in nickel mutagenicity: indirect mechanisms in genotoxicity and interference with DNA repair, in E. Merian and W. Haerdi (eds.), Metal Compounds in Environment and Life, Vol. 4, Science Reviews Inc., Wilmington, pp. 475–480.

    Google Scholar 

  49. Prasad, A.S. (1979) Zinc in Human Nutrition, CRC Press, Boca Raton.

    Google Scholar 

  50. Fraker, P.J., Gershwin, M.E., Good, R.A., and Prasad, A.A. (1986) Interrelationships between zinc and immune function, Fed. Proc. 45, 1474–1479.

    CAS  Google Scholar 

  51. Kasprzak, K.S. and Sunderman, Jr.,F.W. (1977) Mechanism of dissolution of nickel subsulfide in rat serum, Res. Commun. Chem. Pathol. Pharmacol. 16, 95–108.

    CAS  Google Scholar 

  52. Kasprzak, K.S., Diwan, B.A., Konishi, N., Misra, M., and Rice, J.M. (1990) Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11, 647–652.

    Article  CAS  Google Scholar 

  53. Diwan, B.A., Kasprzak, K.S., and Rice, J.M. (1992) Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats, Carcinogenesis 13, 1351–1357.

    Article  CAS  Google Scholar 

  54. Santucci, B., Cannistraci, C., Cristaudo, A., and Picardo, M. (1993) Interactions of metals in nickel-sensitive patients, Contact Dermatitis 29, 251–253.

    Article  CAS  Google Scholar 

  55. Santucci, B., Cannistraci, C., Cristaudo, A., and Picardo, M. (1995) Nickel/magnesium interactions in nickel-sensitive patients, Contact Dermatitis 33, 20–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kasprzak, K.S. (1997). Effects of Calcium, Magnesium, Zinc, and Iron on Nickel Carcinogenesis: Inhibition Versus Enhancement. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics