Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

Abstract

The advent of mutation assays, the development of sensitive methods for the analysis of DNA damage, and the application of spectroscopic methods to biomedical problems have greatly aided our understanding of the mechanisms by which chromium(VI) compounds exert their carcinogenicity. It is now well established that chromium(VI) compounds are strong mutagens, causing point mutations, chromosome aberrations and sister-chromatid exchanges in microorganisms, cultured mammalian cells and laboratory animals [1]. A number of DNA lesions including single strand breaks, alkali-labile sites, DNA-protein cross links, DNA- interstrand cross links [2–11], and recently DNA-amino acid cross links [12] have been observed after treatment of cultured mammalian cells with chromium(VI). The finding that chromium(VI) itself is unreactive towards DNA [13, 14] has prompted research into the reductive conversion of chromium(VI), ultimately to chromium(III), as a crucial step in the formation of DNA lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IARC (1990) Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, vol 49, Chromium. Nickel and Welding, International Agency on the Research of Cancer, Lyon.

    Google Scholar 

  2. Whiting, R.F., Stich, H.F., and Koropatnik, D.J. (1979) DNA damage and DNA repair in cultured human cells exposed to chromate, Chem. Biol. Interact 26, 267–280.

    Article  CAS  Google Scholar 

  3. Douglas, G.R., Bell, R.D., Grant, C.E., Wytsma, D and Bora, K.C. (1980) Effect of lead chromate on chromosome aberration, sister-chromatid exchange and DNA damage in mammalian cells in vitro, Mutat Res. 77, 157–163.

    Article  CAS  Google Scholar 

  4. Tsapakos, M.J., Hampton, T.H., and Jennette, K.E. (1981) The carcinogen chromate induces DNA-crosslinks in rat liver and kidney, J. Biol. Chem. 256, 3623–3626.

    CAS  Google Scholar 

  5. Tsapakos, M.J., Hampton, T.H., and Wetterhahn, K.E. (1983) Chromium(VI)-induced DNA lesions and chromium distribution in rat kidney, liver, and lung, Cancer Res. 43, 5662–5667.

    CAS  Google Scholar 

  6. Wedrychowski, A., Schmidt, W.N., Ward, W.S., and Hmlica, L. (1985) Chromium-induced cross-linking of nuclear proteins and DNA, J Biol. Chem. 260, 7150–7155.

    CAS  Google Scholar 

  7. Christie, N., Cantoni, O., Evans, R.M., Meyn, R.E., and Costa, M. (1984) Use of mammalian DNA repair-deficient mutants to assess the effects of toxic metal compounds on DNA, Biochem. Pharmacol. 33, 1661–1670.

    Article  CAS  Google Scholar 

  8. Cantoni, O. and Costa, M. (1984) Analysis of the induction of alkali sensitive sites in the DNA by chromate and other agents that induce single strand breaks, Carcinogenesis 5, 1207–1209.

    Article  CAS  Google Scholar 

  9. Sugiyama, M., Wang, X.W., and Costa, M. (1986) Comparison of DNA lesions and cytotoxicity induced by calcium chromate in human, mouse, and hamster cell lines, Cancer Res. 46, 4547–4551.

    CAS  Google Scholar 

  10. Sugiyama, M., Patierno, S.R., Cantoni, O., and Costa, M. (1986) Characterization of DNA lesions induced by calcium chromate in synchronous and asynchronous cultured mammalian cells, Mol. Pharmacol. 29, 606–613.

    CAS  Google Scholar 

  11. Hamilton, J.W. and Wetterhahn, K.E. (1986) Chrorrnum(VI)-induced DNA damage in chick embryo liver and blood cells in vivo, Carcinogenesis 7, 2085–2088.

    Article  CAS  Google Scholar 

  12. Zhitkovich, A., Voitkun, V., and Costa, M. (1995) Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate, Carcinogenesis 16, 907–913.

    Article  CAS  Google Scholar 

  13. Jennette, K.E. (1979) Chromate metabolism in liver microsomes, Biol. Trace Elem. Res. 1, 55–62

    Article  CAS  Google Scholar 

  14. Tsapakos, M.J. and Wetterhahn, K.E. (1983) Interaction of chromium with nucleic acids, Chem. Biol. Interact. 46, 265–277

    Article  CAS  Google Scholar 

  15. Ryberg, D., and Alexander, J. (1984) Inhibitory action of hexavalent chromium on the mitochondnal respiration and a possible coupling to the reduction of chromium(VI), Biochem Pharmacol. 33, 2461–2466.

    Article  CAS  Google Scholar 

  16. Connett, P. and Wetterhahn, K.E. (1983) Metabolism of the carcinogen chromate by cellular constituents. Struct. Bonding 54, 93–124.

    Article  CAS  Google Scholar 

  17. Wetterhahn-Jennette, K.E. (1982) Microsomal reduction of the carcinogen chromate produces chromium(V), J. Amer Chem. Soc 104, 874.

    Google Scholar 

  18. O’Bnen, P., Barrett, J., and Swanson, F. (1985) Chromium(V) can be generated in the reduction of chromium(VI) by glutathione, Inorg. Chim. Acta 108, L19.

    Article  Google Scholar 

  19. Cupo, D.Y. and Wetterhahn, K.E. (1984) Repair of chromate-induced DNA damage in chick embryo hepatocytes, Carcinogenesis 5, 1705–1708.

    Article  CAS  Google Scholar 

  20. Robison, S.H., Cantoni, O., and Costa, M. (1984) Analysis of metal-induced DNA lesions and DNA repair replication in mammalian cells, Mutat. Res. 131, 173–181.

    Article  CAS  Google Scholar 

  21. Snyder, R.D. (1988) Role of active oxygen in metal-induced DNA strand breakage in human diploid fibroblasts, Mutat. Res. 193, 237–246.

    Article  CAS  Google Scholar 

  22. Miller III, C.A. and Costa, M. (1988) Characterization of DNA-protein complexes induced in intact cells by the carcinogen chromate, Mol Carcinogenesis 1, 125–133.

    Article  CAS  Google Scholar 

  23. Miller III, C. A. and Costa, M. (1989) Immunological detection of DNA-protein complexes induced by chromate, Carcinogenesis 10, 667–672.

    Article  CAS  Google Scholar 

  24. Costa, M. (1991) DNA-protein complexes induced by chromate and other carcinogens, Env Health Perspect. 92, 45–52

    Article  CAS  Google Scholar 

  25. Standeven, A.M., and Wetterhahn, K.E. (1991) Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis?, Chem. Res. Toxicol. 4, 616–625.

    Article  CAS  Google Scholar 

  26. Cupo, D.Y. and Wetterhahn, K.E. (1985) Modification of chronuum(VI)-induced DNA damage by glutathione and cytochromes P 450 in chicken embryo hepatocytes, Proc. Natl. Acad. Sci. 82, 6755–6759.

    Article  CAS  Google Scholar 

  27. Misra, M, Alcedo, J.A., and Wetterhahn, K.E. (1994) Two pathways for chromium(VI)-induced DNA damage in 14 day chick embryos: Cr-DNA binding in liver and 8-oxo-2’-deoxyguanosine in red blood cells, Carcinogenesis 15, 2911–2917.

    Article  CAS  Google Scholar 

  28. Buttner, B. and Beyersmann, D. (1985) Modification of the erythrocyte anion carrier by chromate, Xenobiotica 15, 735–741.

    Article  CAS  Google Scholar 

  29. Kortenkamp, A., O’Brien, P., and Beyersmann, D. (1987) Uptake of chromium(III) complexes by erythrocytes, Toxicol. Environ. Chem. 14, 23–32.

    Article  CAS  Google Scholar 

  30. Sehlmeyer, U., Hechtenberg, S., KJyszcz, H., and Beyersmann, D. (1990) Accumulation of chromium in Chinese hamster V79 cells and nuclei, Arch. Toxicol. 64, 506–508.

    Article  CAS  Google Scholar 

  31. Connett, P. and Wetterhahn, K.E. (1985) In vitro reaction of the carcinogen chromate with cellular thiols and carboxylic acids, J. Amer. Chem. Soc. 107, 4282–4288.

    Article  CAS  Google Scholar 

  32. Suzuki, Y. (1988) Reduction of hexavalent chromium by ascorbic acid in rat lung lavage fluid, Arch. Toxicol. 62, 116–122.

    Article  CAS  Google Scholar 

  33. Suzuki, Y. (1990) Synergism of ascorbic acid and glutathione in the reduction of hexavalent chromium in vitro, Ind. Health 28, 9–19.

    Article  CAS  Google Scholar 

  34. Suzuki, Y., and Fukuda, K. (1990) Reduction of hexavalent chromium by ascorbic acid and glutathione with special reference to the rat lung, Arch. Toxicol. 64, 169–176.

    Article  CAS  Google Scholar 

  35. Standeven, A.M., and Wetterhahn, K.E. (1991) Ascorbate is the principal reductant of chromium(VI) in rat liver and kidney ultrafiltrates, Carcinogenesis 12, 1733–1737.

    Article  CAS  Google Scholar 

  36. Standeven, A.M., and Wetterhahn, K.E. (1992) Ascorbate is the principal reductant iof chromium(VI) in rat lung ultrafiltrates and cytosols, and mediates chromium-DNA binding in vitro, Carcinogenesis 13, 1319–1324.

    Article  CAS  Google Scholar 

  37. Mikalsen, A., Alexander, J., Ryberg, D. (1989) Microsomal metabolism of hexavalent chromium:Inhibitory effect of oxygen and involvement of cytochrome P 450, Chem.-Biol. Interact. 69, 175–192.

    Article  CAS  Google Scholar 

  38. Mikalsen, A., Alexander, J., Wallin, J., Ingelmann-Sundberg, M., and Andersen, R.A. (1991) Reductive metabolism and protein binding of chromium(VI) by P450 protein enzymes, Carcinogenesis 12, 825–831.

    Article  CAS  Google Scholar 

  39. Kawanishi, S., Inoue, S., and Sano, S. (1986) Mechanisms of DNA cleavage induced by sodium chromate(VI) in the presence of hydrogen peroxide, J. Biol. Chem. 261, 5952–5958.

    CAS  Google Scholar 

  40. Shi, X. and Dalai, N. (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species, Arch. Biochem. Biophys. 111, 342–350.

    Article  Google Scholar 

  41. Tomaszewski, K.E., Agarwal, D.K., and Melnick, R.L. (1986) In vitro steady-state levels of hydrogen peroxide after exposure of male F344 rats and female B6C3F1 mice to hepatic peroxisome proliferators, Carcinogenesis 7, 1871–1876.

    Article  CAS  Google Scholar 

  42. Sugiyama, M., Ando, A., Furuno, A., Burr Furlong, N., Hidaka, T., and Ogura, R. (1987) Effects of vitamin E, vitamin B2, and selenite on DNA single strand breaks induced by sodium chromate (VI), Cancer Lett. 38, 1–7.

    Article  CAS  Google Scholar 

  43. Sugiyama, M., Tsuzuki, K., and Ogura, R. (1991) Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in chines hamster V-79 cell treated with sodium chromate(VI), J. Biol. Chem. 266, 3383–3386.

    CAS  Google Scholar 

  44. Capellmann, M., Mikalsen, A., Hindrun, M., and Alexander, J. (1995) Influence of reducing compounds on the formation of DNA-protein cross links in HL-60 cells induced by hexavalent chromium, Carcinogenesis 16, 1135–1139.

    Article  CAS  Google Scholar 

  45. Sugiyama, M., Ando, A., Nakao, K., Ueta, H., Hidaka, T., and Ogura, R. (1989) Influence of vitamin B2 on formation of chromium(V), alkali-labile sites, and lethality of sodium chromate(VI) in Chinese hamster V-79 cells, Cancer Res. 49, 6180–6184.

    CAS  Google Scholar 

  46. Sugiyama, M., Ando, A., and Ogura, R. (1989) Vitamin B2-enhancement of sodium chromate(VI)-induced DNA single strand breaks: ESR study of the action of vitamin B2, Biochem. Biophys. Res. Comm. 159, 1080–1085.

    Article  CAS  Google Scholar 

  47. Sugiyama, M., Ando, A, and Ogura, R. (1989) Effect of vitamin E on survival, glutathione reductase and formation of chromium(V) in Chines hamster V-79 cells treated with sodium chromate(VI), Carcinogenesis 10, 737–741.

    Article  CAS  Google Scholar 

  48. Sugiyama, M. (1989) Effects of vitamin E and vitamin B2 on chromate-induced DNA lesions, Biol. Trace Elem. Res. 21, 399–404.

    Article  CAS  Google Scholar 

  49. Sugiyama, M. (1991) Effects of vitamins on chromium(VI)-induced DNA damage, Environ Health Perspect 92, 63–70.

    Article  CAS  Google Scholar 

  50. Sugiyama, M, Lin, X., and Costa, M. (1991) Protective effect of vitamin E against chromosomal aberrations and mutations induced by sodium chromate in Chinese hamster V-79 cells, Mutat. Res. 260, 19–23.

    Article  CAS  Google Scholar 

  51. Sugiyama, M. (1992), Role of physiological antioxidants in chromium(VI)-induced cellular injury, Free Radical Biol. Med. 112, 397–407.

    Article  Google Scholar 

  52. Sugden, K.D., Burns, R.B., and Rodgers, S.J. (1990) An oxygen dependence in chromium mutagenesis, Mutat. Res. 244, 239–244.

    Article  CAS  Google Scholar 

  53. Yang, J.L., Hsieh, Y.C., Wu, C.W., and Lee, T.C. (1992) Mutational specificity of chromium(VI) compounds in the hprt locus of Chinese hamster ovary-K1 cells, Carcinogenesis 13, 2053–2057.

    Article  CAS  Google Scholar 

  54. Chen, J., and Thilly, W.G. (1994) Mutational spectrum of chromium(VI) in human cells, Mutat. Res. 323, 21–27.

    Article  CAS  Google Scholar 

  55. McBride, T.J., Preston, B.D., and Leob, L.A. (1991) Mutagenic spectrum resulting from DNA damage by oxygen radical, Biochemistry 30, 207–213.

    Article  CAS  Google Scholar 

  56. Tkeshelashvili, L.K, McBridge, T., Spence, K., and Loeb, L. (1991) Mutation spectrum of copper-induced DNA damage, J. Biol. Chem. 266, 6401–6406.

    Google Scholar 

  57. McAuley, A. and Olatunij, M.A. (1977) Metal-ion oxidations in solution. Part XIX. Redox pathways in the oxidation of penicillamine and glutathione by chromium(VI), Can. J. Chem. 55, 335–340

    Google Scholar 

  58. O’Brien, P. and Ozolins, Z. (1989) Mechanisms in the reduction of chromium(VI) with glutathione. Inorg Chim. Acta 161, 261–266.

    Article  Google Scholar 

  59. Kortenkamp, A., Casadevall, M, Faux, S., Jenner, A., Shayer, R.O.J., Woodbridge, N., and O’Brien, P. (1996) A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium(VI) by glutathione, Arch. Biochem. Biophys. 329, in press.

    Google Scholar 

  60. Aiyar, J., Berkovits, H.J., Floyd, R.A., and Werterhahn, K.E. (1991) Reaction of chromium(VI) with glutathione or with hydrogen peroxide, identification of reactive intermediates and their role in chromium(VI) induced DNA damage, Env. Health Perspect 92, 53–92.

    Article  CAS  Google Scholar 

  61. O’Brien, P. and Wang, G. (1992) Is a one electron path significant in the reduction of chromate by glutathione under physiological conditions? J. Chem. Soc. Chem. Commun. 690–69

    Google Scholar 

  62. O’Brien, P. and Kortenkamp, A. (1994) Chemical models important in understanding the ways in which chromate can damage DNA, Environ. Health Perspect. 102, Suppl.3, 3–10.

    Google Scholar 

  63. Wolf, T., Bolt, H.M., and Ottenwälder, H. (1989) Nick translation studies on DNA strand breaks in pBR322 plasmid induced by different chromium species, Toxicol Lett. 47, 295–301

    Article  CAS  Google Scholar 

  64. Aiyar, J, Borges, K.M., Floyd, R.A., and Wetterhahn, K.E. (1989) Role of chromium(V), glutathione thiyl radical and hydroxyl radical intermediates in chromium(VI)-induced DNA damage, Toxicol Environ. Chem. 22, 135–148.

    Article  CAS  Google Scholar 

  65. Kortenkamp, A., Ozolins, Z., Beyersmann, D, and O’Brien, P. (1989) Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione, Mutat. Res. 216, 19–26.

    Article  CAS  Google Scholar 

  66. Kortenkamp, A., Oetken, G., and Beyersmann, D. (1990) The DNA cleavage induced by a chromium(V) complex and by chromate and glutathione is mediated by activated oxygen species, Mutat. Res. 232, 155–161.

    Article  CAS  Google Scholar 

  67. Misra, H.P. (1974) Generation of Superoxide free radical during the autoxidation of thiols, J. Biol. Chem. 249, 2151–2155.

    CAS  Google Scholar 

  68. Dorfman, L.M. and Adams G.E. (1972) Reactivity of the hydroxyl radical in aqueous solution, US Government Printing Office, Washington DC, NSRDS-NBS46.

    Google Scholar 

  69. Goodgame, D.M.L. and Joy, A.M. (1987) EPR study of the Cr(V) and radical species produced in the reduction of Cr(VI) by ascorbate, Inorg. Chim. Acta 135, 115–118.

    Article  CAS  Google Scholar 

  70. Steams, D. M. and Wetterhalm, K.E. (1994) Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals, Chem. Res. Toxicol 7, 219–230.

    Article  Google Scholar 

  71. Davies, M.B. (1992) Reactions of L-ascorbic acid with transition metal complexes, Polyhedron 11, 285–321.

    Article  CAS  Google Scholar 

  72. Kalus, W.H., Filby, W.G., and Münzner, R. (1982) Chemical aspects of the mutagenic activity of the ascorbic acid autoxidation system, Z. Naturforsch. 37 c, 40–45.

    Google Scholar 

  73. Da Cruz Fresco, P. and Kortenkamp, A. (1994) The formation of DNA cleaving species during the reduction of chromate by ascorbate, Carcinogenesis 15, 1773–1778.

    Article  Google Scholar 

  74. Stearns, D.M., Kennedy, L.J., Courtney, K.D., Giangrande, P.H., Phieffer, L.S., and Wetterhahn, K.E. (1995) Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro, Biochemistry 34, 910–919.

    Article  CAS  Google Scholar 

  75. Da Cruz Fresco, P., Shacker, F., and Kortenkamp, A. (1995) The reductive conversion of chromium(VI) by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA, Chem. Res. Toxicol. 8, 884–890.

    Article  Google Scholar 

  76. Aiyar, J., Berkovits, H.J., Floyd, R.A., and Wetterhahn, K.E. (1990) Reaction of chromium(VI) with hydrogen peroxide in the presence of glutathione. reactive intermediates and resulting DNA damage, Chem. Res. Toxicol. 3, 595–603.

    Article  CAS  Google Scholar 

  77. Shi, X. and Dalai, N. (1990) Evidence for a Fenton-type mechanism for the generation of OH radicals in the reduction of Cr(VI) in cellular media, Arch. Biochem. Biophys. 281, 90–95.

    Article  CAS  Google Scholar 

  78. Shi, X., Mao, Y., Knapton, A.D., Ding, M., Rojanasakul, Y., Gannett, P.M., Dalai, N., and Liu, K. (1994) Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage; role of a Cr(IV)-mediated Fenton-like reaction, Carcinogenesis 15, 2475–2478.

    Article  CAS  Google Scholar 

  79. Shi, X., Dalai, N.S., and Kasprzak, K.S. (1993) Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III), Arch. Biochem. Biophys. 302, 294–299.

    Article  CAS  Google Scholar 

  80. Tsou, T.C., Chen, C.L., Liu, T.Y., and Yang, J.L. (1996) Induction of 8-hydroxydeoxyguanosine in DNA by chromium(TII) plus hydrogen peroxide and its prevention by scavengers, Carcinogenesis 17, 103–108.

    Article  CAS  Google Scholar 

  81. Casadevall, M. and Kortenkamp, A. (1994) The generation of apurinic/apyrimidinic sites in isolated DNA during the reduction of chromate by glutathione, Carcinogenesis 15, 407–409.

    Article  CAS  Google Scholar 

  82. Casadevall, M. and Kortenkamp, A (1995) The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen, Carcinogenesis 16, 805–809.

    Article  CAS  Google Scholar 

  83. Dedon, P.C. and Goldberg, I.H.(1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumour antibiotics bleomycin, neocarzinostatin, and calicheamicin, Chem. Res. Toxicol. 5, 311–332.

    Article  CAS  Google Scholar 

  84. Kortenkamp, A., Casadevall, M., and da Cruz Fresco, P. (1996) The reductive conversion of the carcinogen chromium(VI) and its role in the formation of DNA lesions, Anals Clin. Laborat. Science 26, 160–175.

    CAS  Google Scholar 

  85. Borges, K.M. and Wetterhahn, K.E. (1989) Chromium cross-links glutathione and cysteine to DNA, Carcinogenesis 10, 2165–2168.

    Article  CAS  Google Scholar 

  86. Borges, K.M., Boswell, J.S., Liebross, R.H., and Wetterhahn, K.E. (1991) Activation of chromium(VI) by thiols results in chromium(V) formation, chromium binding to DNA and altered DNA conformation, Carcinogenesis 12, 551–561.

    Article  CAS  Google Scholar 

  87. Aiyar, J., Berkovits, H.J., Floyd, R.A., and Wetterhahn, K.E. (1991) Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage, Env. Health Perspect. 92, 53–62.

    Article  CAS  Google Scholar 

  88. Tamino, G., Peretta, L., and Levis, A.G. (1981) Effects of trivalent and hexavalent chromium on the physicochemical properties of mammalian cell nucleic acids and synthetic polynucleotides, Chem. Biol. Interact. 37, 309–319.

    Article  CAS  Google Scholar 

  89. Pett, V., Sorof, J., Fenderson, M., and Zeff, L. (1985) The effect of chromium(III) upon thermal denaturation of DNA, Bioinorg. Chem. 13, 24–33.

    CAS  Google Scholar 

  90. Kortenkamp, A. and O’Brien, P. (1991) Studies of the binding of chromium(III) complexes to phosphate groups of adenosine triphosphate, Carcinogenesis 12, 921–926.

    Article  CAS  Google Scholar 

  91. Salnikow, K., Zhitkovich, A., and Costa, M. (1992) Analysis of the binding sites of chromium to DNA and protein in vitro and in intact cells, Carcinogenesis 13, 2341–2346.

    Article  CAS  Google Scholar 

  92. Lefevbre, Y. and Pézerat, H. (1992) Production of activated species of oxygen during the chromate(VI)-ascorbate reaction: implication in carcinogenesis, Chem. Res. Toxicol. 5, 461–463.

    Article  Google Scholar 

  93. Snow, E.T. (1994) Effects of chromium on DNA replication in vitro, Environ. Health Perspect. 102, 41–44(Suppl. 3).

    CAS  Google Scholar 

  94. Loeb, L.A. and Preston, B.D. (1986) Mutagenesis by apurinic/apyrimidinic sites, Ann. Rev. Genet. 20, 201–230.

    Article  CAS  Google Scholar 

  95. Bridgewater, L.C., Manning, F.C.R., and Patierno, S.R. (1994) Base-specific arrest of in vitro DNA replication by carcinogenic chromium: relationship to DNA interstrand crosslinking, Carcinogenesis 15, 2421–2427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kortenkamp, A., Casadevall, M., Da Cruz Fresco, P., Shayer, R.O.J. (1997). Pathways in the Chromium(VI)-Mediated Formation of DNA Lesions: A Review. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics