Skip to main content

From the Mass Production of Methylococcus Capsulatus to the Efficient Separation and Isolation of Methane Monooxygenase Proteins. Characterization of Novel Intermediates in Substrate Reactions of Methane Monooxygenase

  • Chapter
Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

  • 346 Accesses

Abstract

Methanotrophs are naturally occurring bacteria which utilize methane as their sole source of metabolic energy and carbon.* Due to their ability to catalyze the formation of methanol from methane under ambient conditions, interest has developed over their use as alternative methanol producers.2 In addition, the fact that they oxidize a variety of hydrocarbon substrates other than methane, attracted a lot of attention in their potential exploitation in bioremediation.3 The metalloenzyme system responsible for the conversion of methane to methanol (Reaction 1) in the initial step of their metabolism is methane monooxygenase (MMO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, C. (1982) The Biochemistry of Methyl ofrophs; Academic press: New York, pp. 296–379.

    Google Scholar 

  2. Dalton, H. and Leak, D. J. (1985) Mechanistic studies on the mode of action of methane mouooxygenase. in H. Degn. R.P. Cox. and H. Toflund (eds.). Gas Enzymoiogy. Reidel. Dordrecht. Holland, p. 169–186.

    Chapter  Google Scholar 

  3. a) Jahng, D. and Wood, T. K. (1994) Trichloroethylene and chloroform degradation by a recombinant Pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appi Environ. Microbiol. 60.2473–2482. b) Lindstrom. J. E. Prince. R. C Clark, J.C., Grossman, M. J. Yeager. T. R., Braddock, J. F., and Brown, E. (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdezoil spill. Appl. Environ. Microbiol. 57, 2514-2522.

    CAS  Google Scholar 

  4. Stanley, S. H. Prior, S. D. Leak, D. J. and Dalton, H. (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: studies in batch and continuous cultures, Biotech. Lett. 5, 487–492.

    Article  CAS  Google Scholar 

  5. Liu, K. E. and Lippard, S. J. (1995) Studies of the soluble methane monooxygenase protein system: structure component interaction and hydroxylation mechanism. Adv. Iuorg. Chem. 42, 263–289. b) Fox, B. G. Froland. W. A. Jollie, D. R., and Lipscomb, J. D. (1990) Methane monooxygenase from Methylosinus trichosporiuin OB3b. in M.Lidstrom (ed.). “Methods in Enzymology”. Academic Press. San Diego. CA. 80. 191-202.

    CAS  Google Scholar 

  6. Liu, K. E. Johnson, C. C. Newcomb, M. and Lippard, S. J. (1993) Radical clock substrate probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by methane monooxygenase, J. Am. Chem. Soc. 115. 939–947.

    Article  CAS  Google Scholar 

  7. Pilkington, S. J. and Dalton, H. (1990) Soluble methane mouooxygenase from Methylococcus capsulatus Bath, in M. Lidstrom (ed.). Methods in Enzymology. Academic Press: San Diego.CA. 188. pp. 181–190.

    Google Scholar 

  8. Ravi, N. Bollinger, J. M. Jr., Huynh, B. H. Edmondson, D. and Stubbe, J (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E.coli ribonucleatide reductase. 1. Mössbauer characterization of the diferic radical precursor. J. Am. Chem. Soc. 116. 8007–8014.

    Article  CAS  Google Scholar 

  9. a) Rosenzweig, A. C. Frederick, C. A. Lippard, S. J. and Nordlund, P. (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane, Nature 366, 537–543. b) Rosenzweig. A. C., Nordlund. P. Takahara. P. M. Frederick. C. A. and Lippard, S. J. (1995) Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chan. Biol. 2, 409-418.

    Article  CAS  Google Scholar 

  10. Lipscomb, J. D. (1994) Biochemistry of the soluble methane monooxygenase, Aimu. Rev Microbiol. 48, 371–399.

    Article  CAS  Google Scholar 

  11. Liu, K. E. Valentine, A. M., Wang, D., Huynh, B. H. Edmondson, D. E., Salifoglou, A. and Lippard, S. J. (1995) Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 117, 10174–10185.

    Article  CAS  Google Scholar 

  12. Liu, K. E. Wang, D., Huynh, B. H., Edmondson, D. E., Salifoglou, A. and Lippard, S. J. (1994) Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase form Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 116, 7465–7466.

    Article  CAS  Google Scholar 

  13. Liu, K. E., Valentine, A. M., Qiu, D. Edmondson, D. E., Appelman, E. H., Spiro, T. G. and Lippard, S. J. (1995) Characterization of a diiron(III) peroxo intermediate in the reaction cycle of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. chem. Soc. 117, 4997–4998.

    Article  CAS  Google Scholar 

  14. Lee, S.-K., Nesheim, J. C. and Lipscomb, J. D. (1993)Transient intermediates of the methane monooxygenase catalytic cycle, J. Biol. Chem. 268, 21569–21577. b) Lee. S.-K., Fox. B. G., Froland. W. A., Lipscomb, J. D., and Münck, E. (1993) A transient intermediate of the methane monooxygenase catalytic cycle containing an Fe(IV)Fe(IV) cluster J. Am. Chem. Soc. 115, 6450-6451.

    CAS  Google Scholar 

  15. )Que, L., Jr. and True, A. E. (1990) Dinuclear iron-and manganese-oxo sites in Biolog. Prog, lnorg. Chem. 38, 97–200. b) Kurtz. D. M. (1990) Oxo-and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chem. Rev. 90, 585.-606. c) Wilkins. R. G.(1990) Binuclear iron centres in proteins. Chem. Soc. Rev. 21, 171-178. d) Brennan. B. A., Chen, Q., Juarrez-Garcia, C., True, A. E., O’Connor. C. J. and Que. L., Jr. (1991) Models for diiron-oxo proteins: The peroxide adduct of Fe2(HPTB)(OH)(NO3)4. lnorg. Chem. 30, 1937-1943. e) Nishida. Y., Takeuchi. M., Shimo. H., and Kida. S. (1987) Unique Reactivity of peroxide ion trapped by binuclear iron(III) complex. Z Naturforsch, B: Chem. Sci. 42B, 52-54.

    Article  CAS  Google Scholar 

  16. Kimoon K. and Lippard, S. J. (1996) Structure and Mössbauer spectrum of (μ-1, 2-peroxo)bis(μ-carboxylato)diiron(III) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle. J. Am. Chem. Soc. 118, 4914–4915.

    Article  Google Scholar 

  17. Ortiz de Montellano, P. R. (1986) Oxygen activation and transfer, in Ortiz de Montellano, P.R. (ed.). Cytochrome P-450 Structure, Mechanism, and Biochemistry. Plenum, New York. p. 217–271.

    Google Scholar 

  18. Bollinger, J. M., Jr., Tong, W. H., Ravi, N., Huynh, B. H., Edmondson, D. E. and Stubbe, J. (1994) Mechanism of assembly of the tyrosyl radical-diiron(III)cofactor of E. coli nobonucleotide reductase, 2. Kinetics of the excess Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8015–8023. b) Bolliuger, J. M., Jr., Tong, W. H., Ravi. N., Huynh, B. H., Edmondson and D. E. Stubbe, J. (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 1. Kinetics of the limiting Fe2+ reaction by optical. EPR. and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8024-8032.

    Article  CAS  Google Scholar 

  19. Feig, A. L. and Lippard, S. J. (1994) Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry, Cham. Rev. 94, 759–805.

    Article  CAS  Google Scholar 

  20. a) Green, J. and Dalton, H. (1989) Substrate specificity of soluble methane monooxygenase, Biol. Chem. 264, 17698–17703. b) Andersson. K. K., Froland, W. A., Lee, S.-K. and Lipscomb, J. D.(1991) Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. New J. Chem. 15, 411. c) Rataj, M. J., Kauth, J. E. and Donnelly, M. I. (1991) Oxidation of deuterated compounds by high specific activity methane monoocygenase from Methylosinus trichosporium: mechanistic implications, J. Biol. Chem. 266, 18684-18690.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, K.E. et al. (1997). From the Mass Production of Methylococcus Capsulatus to the Efficient Separation and Isolation of Methane Monooxygenase Proteins. Characterization of Novel Intermediates in Substrate Reactions of Methane Monooxygenase. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics