Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

  • 346 Accesses

Abstract

For a long time aluminium was considered to be an innocuous element for humans, in large part because of the very low intestinal uptake of Al from the diet. It is now clear that Al is an important toxicant in plants, experimental animals and humans [1]. The increase in the Al exposure of the population becomes of greater concern in light of a series of studies which shows an increased risk of various neurological disorders, including Alzheimer’s disease (AD) and other skeletal and hematological disorders, associated with elevated Al levels in body fluids and tissues [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicolini, M., Zatta, P.F. and Corain, B. (1991, 1994) Aluminum in Chemistry Biology and Medicine, Vol 1 Cortina Intnl. Verona, Vol 2, Harwood Acad. Publ.

    Google Scholar 

  2. Martin, R.B. (1994) Aluminum: a neurotoxic product of acid rain, Accts. Chem. Res., 27, 204–210.

    Article  CAS  Google Scholar 

  3. Kiss, T. and Farkas, E. (1996) Interaction of Al(III) with Biomolecules: Bioinorganic Chemistry and Biological Implications, in R. Hay, I.R. Dilworth and K.B. Nolan (eds.), Perspectives on Bioinorganic Chemistry, Vol 3, Ch 4, JAI Press.

    Google Scholar 

  4. Kiss, T. (1995) Interaction of Al(III) with biomolecules. — Any relevance to Alzheimer’s disease, Arch. Gerontology Geriatrics, 21, 99–112.

    Article  CAS  Google Scholar 

  5. Harris, W.R., Berthon, G., Day, J.P., Exley, C., Flaten, T.P., Forbes, W.F., Kiss, T., Orvig, C. and Zatta, P.F. (1996) Speciation of Aluminum in biological systems, J. Toxicol. Environm. Health, (in press).

    Google Scholar 

  6. Öhman, L-O. and Martin, R.B. (1994) Citrate as the main small molecule binding Al3+ in Serum. Clin. Chem., 40, 598–601.

    Google Scholar 

  7. Daydé, S., Fiella, M. and Berthon, G. (1990) Aluminum speciation studies in biological fluids. Part 3. Quantitative investigation of aluminum-phosphate complexes and assessment of their potential significance in vivo. J. Inorg. Biochem., 38, 241–259.

    Article  Google Scholar 

  8. Duffield, J.R., Edwards, K., Evans, D.A., Morrish, D.M., Vobe, R.A. and Williams, D.R. (1991) Low molecular mass aluminum complex speciation in biofluids. J. Coord. Chem., 23, 277–290.

    Article  CAS  Google Scholar 

  9. Harris, W.R. (1992) Equilibrium model for speciation of aluminum in serum, Clin. Chem., 38, 1809–1818.

    CAS  Google Scholar 

  10. Jackson, G.E. (1990) Aluminium, gallium and indium in biological fluids — a computer model of blood plasma, Polyhedron, 9, 163–170.

    Article  CAS  Google Scholar 

  11. Clevette, D.J. and Orvig, C. (1990) Comparison of ligands of differing denticity and basicity for the in vivo chelation of aluminium and gallium, Polyhedron, 9, 151–161.

    Article  CAS  Google Scholar 

  12. Öhman, L.O. and Martin, R.B. (1994) Citrate as the main small molecule binding Al3+ in serum. Clin. Chem., 40, 598–601.

    Google Scholar 

  13. Bell, J.D., Kubal, G., Radulovic, S., Sadler, P.J. and Tucker, A. (1993) Detection of Aluminium(III) binding to citrate in human blood plasma by proton nuclear magnetic resonance spectroscopy, Analyst, 118, 241–244.

    Article  CAS  Google Scholar 

  14. Kiss T., Sóvágó, I. and Martin, R.B. (1991) Al3+ binding by adenosine 5’-phosphates: AMP, ADP, and ATP, Inorg. Chem., 30, 2130–2132.

    Article  CAS  Google Scholar 

  15. Crapper, D.R., Quittkat, S., Krishnan, S.S., Dalton, A.J. and De Boni, U. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta. Neuropath., 50, 19–24.

    Article  CAS  Google Scholar 

  16. Wen, G.Y. and Wisniewski, H.M. (1985) Histochemical localization of aluminum in the rabbit CNS. Acta Neuropath., 68, 175–184.

    Article  CAS  Google Scholar 

  17. Dryssen, D., Harakdsson, C., Nyberg, E. and Wedborg, M. (1987) Complexation of aluminum with DNA. J. Inorg. Biochem., 29, 67–75.

    Article  Google Scholar 

  18. Sternberger, N.H., Sternberger, L.A. and Ulrich, J. (1985) Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc. Nat. Acad. Sci. U.S.A., 82, 4274–4276.

    Article  CAS  Google Scholar 

  19. Öhman, L.O. (1988) Stable and metastable complexes in the system H’-Al3+-citric acid, Inorg. Chem., 27, 2565–2570.

    Article  Google Scholar 

  20. Banks, W.A. and Kastin, A.J. (1985) Peptides and the BBB lipophilicity as a predictor of permeability. Brain Res. Bull., 15, 282–292.

    Article  Google Scholar 

  21. Martin, R.B. (1992) Aluminum speciation in biology. In Aluminum in Biology and Medicine, Ciba Foundation Symposium. John Wiley & Sons. New York, pp 5–25.

    Google Scholar 

  22. Hollosi, M., Ürge, L., Perczel, A., Kajtár, J., Teplán, I., Ötvös, L. and Fasman, G.D. (1992) Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein. J. Mol. Biol., 223, 673–682.

    Article  CAS  Google Scholar 

  23. McLachlan, D.R., Dalton, A.J., Kruck, T.P.A., Bell, M.Y., Smith, W.L. Karlow, W. and Andrews, D.F. (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 337, 1061–1075.

    Article  Google Scholar 

  24. Meiri, H., Banin, E., Roll, M. and Rousseau, A. (1993) Toxic effect of aluminum on nerve cells and synaptic transmission. Progr. Neurobiol., 40, 89–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kiss, T., Lakatos, A., Kiss, E., Martin, R.B. (1997). Interaction of Al(III) with Biomolecules: Bioinorganic Chemistry and Biological Implication. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics