Skip to main content

The Afferentation Theory of Cerebral Arousal

  • Chapter
Neuroanesthesia

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 32))

Abstract

Physiologists have recognized for decades that alterations in muscle activity have the potential to alter cerebral function (1). This relationship is perhaps best defined by the afferentation theory of cerebral arousal. In its simplest form, afferentation theory predicts that agents or maneuvers that produce muscle stretch or contraction, or directly stimulate muscle stretch receptors (i.e., muscle afferents), will produce cerebral stimulation (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleitman N: Sleep and Wakefulness. Chicago, The University of Chicago Press, 1963, pp 195–197

    Google Scholar 

  2. Lanier WL, Iaizzo PA, Milde JH: Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: The effects of pretreatment with a defasciculating dose of pancuronium. Anesthesiology 71:87–95, 1989

    Article  PubMed  CAS  Google Scholar 

  3. Lanier WL, Iaizzo PA, Milde JH, Sharbrough FW: The cerebral and systemic effects of movement in response to a noxious stimulus in lightly anesthetized dogs: Possible modulation of cerebral function by muscle afferents. Anesthesiology 80:392–401, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Guyton AC: Textbook of Medical Physiology, 7th ed., W. B. Saunders, Philadelphia, 1986, pp 607–612

    Google Scholar 

  5. Brinling JC, Smith CM: A characterization of the stimulation of mammalian muscle spindles by succinylcholine. J Pharmacol Exp Ther 129:56–60, 1960

    PubMed  CAS  Google Scholar 

  6. Hagbarth K-E, Wallin G, Löfstedt L: Muscle spindle activity in man during voluntary fast alternating movements. J Neurol Neurosurg Psychiatry 38:625–635, 1975

    Article  PubMed  CAS  Google Scholar 

  7. Hagbarth K-E, Wallin G, Burke D, Löfstedt L: Effects of the Jendrassik manoeuvre on muscle spindle activity in man. J Neurol Neurosurg Psychiatry 38:1143–1153, 1975

    Article  PubMed  CAS  Google Scholar 

  8. Ghosh S, Brinkman C, Porter R: A quantitative study of the distribution of neurons projecting to the precentral motor cortex in the monkey (M. fascicularis). J Comp Neurol 259:424–444, 1987

    Article  PubMed  CAS  Google Scholar 

  9. Wiesendanger M, Miles TS: Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62:1234–1270, 1982

    PubMed  CAS  Google Scholar 

  10. Lucier GE, Rüegg DC, Wiesendanger M: Responses of neurones in motor cortex in area 3a to controlled stretches of forelimb muscles in cebus monkeys. J Physiol (Lond) 251:833–853, 1975

    CAS  Google Scholar 

  11. Wiesendanger M, Rüegg DG, Lucier GE: Why transcortical reflexes? Can J Neurol Sci 2:295–301, 1975

    PubMed  CAS  Google Scholar 

  12. Wong YC, Kwan HC, Murphy JT: Projection of primary muscle spindle afferents to motorsensory cortex. Can J Physiol Pharmacol 52:349–351, 1974

    Article  PubMed  CAS  Google Scholar 

  13. Lanier WL, Milde JH, Michenfelder JD: Cerebral stimulation following succinylcholine in dogs. Anesthesiology 64:551–559, 1986

    Article  PubMed  CAS  Google Scholar 

  14. Dal Santo G: Kinetics of distribution of radioactive labeled muscle relaxants: III. Investigations with 14C-succinyldicholine an 14C-succinylmonocholine during controlled conditions. Anesthesiology 29:435–443, 1968

    Article  Google Scholar 

  15. Motokizawa F, Fujimori B: Arousal effect of afferent discharges from muscle spindles upon electroencephalograms in cats. Jpn J Physiol 14:344–353, 1964

    Article  PubMed  CAS  Google Scholar 

  16. Marx GF, Andrews IC, Orkin LR: Cerebrospinal fluid pressures during halothane anesthesia. Can Anaesth Soc J 9:239–245, 1962

    Article  PubMed  CAS  Google Scholar 

  17. Minton MD, Grosslight K, Stirt JA, Bedford RF: Increases in intracranial pressure from succinylcholine: Prevention by prior nondepolarizing blockade. Anesthesiology 65:165–169, 1986

    Article  PubMed  CAS  Google Scholar 

  18. Stint JA, Grosslight KR, Bedford RF, Vollmer D: “Defasciculation” with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology 67:50–53, 1987

    Article  Google Scholar 

  19. Marsh ML, Dunlop BJ, Shapiro HM, et al: Succinylcholine-intracranial pressure effects in neurosurgical patients. Anesth Analg 59:550–551, 1980

    Article  Google Scholar 

  20. Cottrell JE, Hartung J, Giffin JP, Shwiry B: Intracranial and hemodynamic changes after succinylcholine administration in cats. Anesth Analg 62:1006–1009, 1983

    Article  PubMed  CAS  Google Scholar 

  21. Oshima E, Shingu K, Mori K: EEG activity during halothane anaesthesia in man. Br J Anaesth 53:65–72, 1981

    Article  PubMed  CAS  Google Scholar 

  22. Mori K, Iwabuchi K, Fujita M: The effects of depolarizing muscle relaxants on the electroencephalogram and the circulation during halothane anesthesia in man. Br J Anaesth 45:604–610, 1973

    Article  PubMed  CAS  Google Scholar 

  23. Smith CM, Eldred E: Mode of action of succinylcholine on sensory endings of mammalian muscle spindles. J Pharmacol Exp Ther 131:237–242, 1961

    CAS  Google Scholar 

  24. Granit R, Skoglund S, Thesleff S: Activation of muscle spindles by succinylcholine and decamethonium. The effects of curare. Acta Physiol Scand 28:134–151, 1953

    Article  PubMed  CAS  Google Scholar 

  25. Giaquinto S, Pompeiano O, Swett JE: EEG and behavioral effects of fore-and hindlimb muscular afferent volleys in unrestrained cats. Arch Ital Biol 101:133–148, 1963

    PubMed  CAS  Google Scholar 

  26. Nakai M, Iadecola C, Ruggiero DA, et al: Electrical stimulation of cerebellar fastigial nucleus increases cerebral cortical blood flow without change in local metabolism: Evidence for an intrinsic system in brain for primary vasodilation. Brain Res 260:35–49, 1983

    Article  PubMed  CAS  Google Scholar 

  27. Lanier WL, Iaizzo PA, Milde JH: The effect of intravenous succinylcholine on cerebral function and muscle afferent activity following complete ischemia in halothane-anesthetized dogs. Anesthesiology 73:485–490, 1990

    Article  PubMed  CAS  Google Scholar 

  28. Lanier WL, Albrecht RF II, Iaizzo PA: Divergence of intracranial and central venous pressures in lightly anesthetized, tracheally intubated dogs that move in response to a noxious stimulus. Anesthesiology 84:605–613, 1996

    Article  PubMed  CAS  Google Scholar 

  29. Perlman JM, Goodman S, Kreusser KL, Volpe JJ: Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood flow velocity in preterm infants with respiratory distress syndrome. N Engl J Med 312:1353–1357, 1985

    Article  PubMed  CAS  Google Scholar 

  30. Hobbs AJ, Bush GH, Downham DY: Peri-operative dreaming and awareness in children. Anaesthesia 43:560–562, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lanier, W.L. (1997). The Afferentation Theory of Cerebral Arousal. In: Johnson, J.O., Sperry, R.J., Stanley, T.H. (eds) Neuroanesthesia. Developments in Critical Care Medicine and Anesthesiology, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5774-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5774-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6437-8

  • Online ISBN: 978-94-011-5774-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics