Skip to main content

Mild Hypothermic Brain Protection

  • Chapter
Neuroanesthesia

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 32))

  • 86 Accesses

Abstract

Hypothermia as a strategy for intraoperative neuroprotection has been recognized by neuroanesthesiologists for decades. In large part it was abandoned early because it was thought that the principle mechanism by which hypothermia protects is reduction in cerebral metabolic rate (CMR). This implied that deep levels of hypothermia are necessary to provide meaningful benefit. Accordingly, cardiopulmonary bypass would be essential to avoid complications of dysrhythmia and coagulopathy. Beside logistical issues, bypass also requires administration of heparin which considerably increases the complexity of performing surgery on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wong K: Physiology and pharmacology of hypothermia. Western J Med 138:227–232, 1983

    CAS  Google Scholar 

  2. Chen H, Chopp M, Zhang Z, Garcia J: The effect of hypothermia on transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 12:621–628, 1992

    Article  CAS  PubMed  Google Scholar 

  3. Onesti S, Baker C, Sun P, Solomon R: Transient hypothermia reduces focal ischemic brain damage in the rat. Neurosurgery 29:369–373, 1991

    Article  CAS  PubMed  Google Scholar 

  4. Ridenour T, Warner D, Todd M, McAllister A: Mild hypothermia reduces infarct size resulting from temporary but not permanent focal ischemia in the rat. Stroke 23:733–738, 1992

    Article  CAS  PubMed  Google Scholar 

  5. Busto R, Dietrich W, Globus M, et al: Small differences in intraischemic brain temperature critically determine the extent of neuronal injury. J Cereb Blood Flow Metab 7:729–738, 1987

    Article  CAS  PubMed  Google Scholar 

  6. Sano T, Drummond J, Patel P, et al: A comparison of the cerebral protective effects of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat. Anesthesiology 76:221–228, 1992

    Article  CAS  PubMed  Google Scholar 

  7. Clifton G, Jiang J, Lyeth B, et al: Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121, 1991

    Article  CAS  PubMed  Google Scholar 

  8. Dietrich W, Alonso O, Busto R, et al: Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250–258, 1994

    Article  CAS  PubMed  Google Scholar 

  9. Lundgren J, Smith M-L, Blennow G, Siesjö B: Hyperthermia aggravates and hypothermia ameliorates epileptic brain damage. Exp Brain Res 99:43–55, 1994

    Article  CAS  PubMed  Google Scholar 

  10. Busto R, Dietrich W, Globus M, Ginsberg M: Postichemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 101:299–304, 1989

    Article  CAS  PubMed  Google Scholar 

  11. Coimbra C, Wieloch T: Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol 87:325–331, 1994

    Article  CAS  PubMed  Google Scholar 

  12. Colbourne F, Corbett D: Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Res. 654:265–272, 1994

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich W, Busto R, Alonso O, et al: Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13:541–549, 1993

    Article  CAS  PubMed  Google Scholar 

  14. Colbourne F, Corbett D: Delayed postischemic hypothermia: A six month survival study using behavioral and histologic assessments of neuroprotection. J Neurosci 15:7250–7260, 1995

    CAS  PubMed  Google Scholar 

  15. Silverberg G, Reitz B, Ream A: Hypothermia and cardiac arrest in the treatment of giant aneurysms of the cerebral circulation and hemangioblastoma of the medulla. J Neurosurg 55:337–346, 1981

    Article  CAS  PubMed  Google Scholar 

  16. Naylor C, Lichtenstein S, Fremes S, et al: Randomised trial of normothermic versus hypothermic coronary bypass surgery. Lancet 343:559–563,1994

    Article  Google Scholar 

  17. Bellinger D, Jonas R, Rappaport L, et al: Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555, 1995

    Article  CAS  PubMed  Google Scholar 

  18. Clifton G, Allen S, Barrodale P, et al: A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10:263–273, 1993

    Article  CAS  PubMed  Google Scholar 

  19. Marion D, Obrist W, Carlier P, et al: The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79:354–362, 1993

    Article  CAS  PubMed  Google Scholar 

  20. Shiozaki T, Sugimoto H, Taneda M, et al: Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79:363–368, 1993

    Article  CAS  PubMed  Google Scholar 

  21. Craen R, Gelb A, Eliazaw M, Lok P: Current anesthetic practices and use of brain protective therapies for cerebral aneurysm surgery at 41 North American centers (abstract). J Neurosurg Anesth 6:303, 1994

    Google Scholar 

  22. Busto R, Globus M-T, Dietrich W, et al: Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20:904–910, 1989

    Article  CAS  PubMed  Google Scholar 

  23. I Ilievich U, Zornow M, Choi K, et al: Effects of hypothermia or anesthetics on hippocampal glutamate and glycine concentrations after repeated transient global cerebral ischemia. Anesthesiology 80:177–186, 1994

    Article  Google Scholar 

  24. Patel P, Drummond J, Cole D, Yaksh T: Differential temperature sensitivity of ischemia-induced glutamate release and eicosanoid production in rats. Brain Res 650:205–211, 1994

    Article  CAS  PubMed  Google Scholar 

  25. Arai H, Uto A, Ogawa Y, Sato K: Effect of low temperature on glutamate-induced intracellular calcium accumulation and cell death in cultured hippocampal neurons. Neurosci Lett 163:132–134, 1993

    Article  CAS  PubMed  Google Scholar 

  26. Bickler P, Buck L, Hansen B: Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. Anesthesiology 81:1461–1469, 1994

    Article  CAS  PubMed  Google Scholar 

  27. Bergstedt K, Hu B, Wieloch T: Postischaemic changes in protein synthesis in the rat brain: Effects of hypothermia. Exp Brain Res 95:91–99,1993

    Article  CAS  PubMed  Google Scholar 

  28. Widmann R, Miyazawa T, Hossmann K: Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by postischemic recovery of protein synthesis. J Neurochem 61:200–209, 1993

    Article  CAS  PubMed  Google Scholar 

  29. Busto R, Globus M, Neary J, Ginsberg M: Regional alterations of protein kinase C activity following transient cerebral ischemia: Effects of intraischemic brain temperature modulation. J Neurochem 63:1095–1103, 1994

    Article  CAS  PubMed  Google Scholar 

  30. Kader A, Frazzini V, Baker C, et al: Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia. Neurosurgery 35:272–277, 1994

    Article  CAS  PubMed  Google Scholar 

  31. Dawson D: Nitric oxide and focal cerebral ischemia: Multiplicity of actions and diverse outcome. Cerebrovasc Brain Metab Rev 6:299–324, 1994

    CAS  PubMed  Google Scholar 

  32. Baiping L, Xiujuan T, Hongwei C, et al: Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke 25:147–150, 1994

    Article  Google Scholar 

  33. Karibe H, Chen S, Zarow G, et al: Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res 649:12–18, 1994

    Article  CAS  PubMed  Google Scholar 

  34. Globus M, Alonso O, Dietrich W, et al: Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J Neurochem 65:1704–1712, 1995

    Article  CAS  PubMed  Google Scholar 

  35. Globus M, Busto R, Lin B, et al: Detection of free radical activity during transient global ischemia and recirculation: Effects of intraischemic brain temperature modulation. J Neurochem 65:1250–1256,1995

    Article  CAS  PubMed  Google Scholar 

  36. Back T, Kohno K, Hossmann K-A: Cortical negative DC deflections following middle cerebral artery occlusion and KC1-induced spreading depression: Effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 14:12–19, 1994

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Chopp M, Bodzin G, Chen H: Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury. J Cereb Blood Flow Metab 13:389–394, 1993

    Article  CAS  PubMed  Google Scholar 

  38. Stone J, Young W, Smith C, et al: Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology 82:344–351, 1995

    Article  CAS  PubMed  Google Scholar 

  39. Mellergård P, Nordström C: Intracerebral temperature in neurosurgical patients. Neurosurgery 28:709–713, 1991

    Article  PubMed  Google Scholar 

  40. Baker K, Young W, Stone J, et al: Deliberate mild intraoperative hypothermia for craniotomy. Anesthesiology 81:361–367, 1994

    Article  CAS  PubMed  Google Scholar 

  41. Frank S, Beattie C, Christopherson R, et al: Unintentional hypothermia is associated with postoperative myocardial ischemia. Anesthesiology 78:468–476, 1993

    Article  CAS  PubMed  Google Scholar 

  42. Frank S, Higgins M, Breslow M, et al: The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia: A randomized clinical trial. Anesthesiology 82:83–93, 1995

    Article  CAS  PubMed  Google Scholar 

  43. Vitez T, White P, Eger E: Effects of hypothermia on halothane MAC and isoflurane MAC in the rat. Anesthesiology 41:80–81, 1974

    Article  CAS  PubMed  Google Scholar 

  44. Antognini J: Hypothermia eliminates isoflurane requirements at 20°C. Anesthesiology 78:1152–1156, 1993

    Article  CAS  PubMed  Google Scholar 

  45. Antognini J, Lewis B, Reitan J: Hypothermia minimally decreases nitrous oxide anesthetic requirements. Anesth Analg 79:980–982, 1994

    Article  CAS  PubMed  Google Scholar 

  46. Heier T, Caldwell J, Sessler D, Miller R: Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 74:815–819, 1991

    Article  CAS  PubMed  Google Scholar 

  47. Heier T, Caldwell J, Sharma M, et al: Mild intraoperative hypothermia does not change the pharmacodynamics (concentration-effect relationship) of vecuronium in humans. Anesth Analg 78:973–977, 1994

    CAS  PubMed  Google Scholar 

  48. Aziz L, Ono K, Ohta Y, et al: Effect of hypothermia on the in vitro potencies of neuromuscular blocking agents and on their antagonism by neostigmine. Br J Anaesth 73:662–666, 1994

    Article  CAS  PubMed  Google Scholar 

  49. Resnick D, Marion D, Darby J: The effect of hypothermia on the incidence of delayed traumatic intracerebral hemorrhage. Neurosurgery 34:252–256, 1994

    Article  CAS  PubMed  Google Scholar 

  50. Sheffield C, Sessler D, Hunt T: Mild hypothermia during isoflurane anesthesia decreases resistance to E. coli dermal infection in guinea pigs. Acta Anaesthesiol Scand 38:201–205, 1994

    Article  CAS  PubMed  Google Scholar 

  51. Kurz A, Sessler D, Lenhardt R: Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 334:1209–1215, 1996

    Article  CAS  PubMed  Google Scholar 

  52. Cheney F, Posner K, Caplan R, Gild W: Burns from warming devices in anesthesia: A closed claims analysis. Anesthesiology 80:806–810, 1994

    Article  CAS  PubMed  Google Scholar 

  53. Minamisawa H, Smith M, Siesjö B: The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28:26–33, 1990

    Article  CAS  PubMed  Google Scholar 

  54. Wass C, Lanier W, Hofer R, et al: Temperature changes of ≥ 1°C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology 83:325–335, 1995

    Article  CAS  PubMed  Google Scholar 

  55. Warner D, McFarlane C, Todd M, et al: Sevoflurane and halothane reduce focal ischemic brain damage in the rat: Possible influence on thermoregulation. Anesthesiology 79:985–992, 1993

    Article  CAS  PubMed  Google Scholar 

  56. Takagi K, Ginsberg M, Globus MY-T, et al: Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Physiol 266:H1770–H1776, 1994

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Warner, D.S. (1997). Mild Hypothermic Brain Protection. In: Johnson, J.O., Sperry, R.J., Stanley, T.H. (eds) Neuroanesthesia. Developments in Critical Care Medicine and Anesthesiology, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5774-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5774-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6437-8

  • Online ISBN: 978-94-011-5774-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics