Skip to main content

Electrooptic and Photoconductive Techniques for Probing and Imaging of THz Electric Signals

  • Chapter
Book cover New Directions in Terahertz Technology

Part of the book series: NATO ASI Series ((NSSE,volume 334))

Abstract

Since femtosecond lasers have become available, they have been are applied to measure, in the time domain, the electric response of ultrahigh-speed devices with bandwidths in the GHz and THz frequency range. Such laser-based measurement systems exhibit a superior time resolution (bandwidth coverage) owing to the short duration of the optical pulses. Because of their complexity, femtosecond optical techniques remained confined to a small community working in ultrahigh-speed-device development where measurement alternatives are sparse. In recent years, however, optical probing has become more and more attractive because it has developed into a flexible test tool that allows us to choose from a variety of methods to solve a specific measurement problem. Here, we describe a modular measurement system that offers a number of alternatives to synchronize to, generate, and detect high-frequency electric signals in microelectronic devices and circuits [1]. A frequency range spanning more than three orders of magnitudes from 1 GHz to 4 THz is covered. For stroboscopic measurements on circuits driven by electronically generated clock signals, the system is configured to lock onto periodic signals of arbitrary frequency. Alternatively, impulsive time-domain mesurements can be performed on chip by signal injection with freely positionable photoconductive probes or by direct optical excitation of active devices. With respect to detection, the following approaches are available: sampling with freely positionable electrooptic and photoconductive probe tips, and probe-tip-free testing based on the field-dependent optical nonlinearity of the circuit’s substrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The present paper is a summary of a quite comprehensive description of our advances in optical testing: Pfeifer, T., Heiliger, H.-M., Löffler, T., Ohlhoff, C., Meyer, C., Lüpke, G., Roskos, H. G., and Kurz, H. (in press) Optoelectronic on-chip characterization of ultrafast electric devices: measurement techniques and applications, IEEE J. Selected Topics in Quantum Electronics.

    Google Scholar 

  2. Löffler, T., Pfeifer, T., Roskos, H. G., and Kurz, H. (1995) Detection of free-running electric signals up to 75 GHz using a femtosecond-pulse laser, IEEE Photon. Techn. Lett. 7, 1189–1191.

    Article  Google Scholar 

  3. Löffler, T., Pfeifer, T., Roskos, H. G., Kurz, H., and van der Weide, D. W. (1996) Stable optoelectronic detection of free-running microwave signals with 150 GHz bandwidth, Microelectronic Engineering 31, 397–408.

    Article  Google Scholar 

  4. Kim, J., Williamson, S., Nees, J., Wakana, S.-i., and Whitaker, J. (1993) Photoconductive sampling probe with 2.3-ps temporal resolution and 4-μV sensitivity, Appl. Phys. Lett 62, 2268–2270.

    Article  Google Scholar 

  5. Pfeifer, T., Heiliger, H.-M., Stein von Kamienski, E., Roskos, H. G., and Kurz, H. (1994) Fabrication and characterization of freely positionable silicon-on-sapphire photoconductive probes, J. Opt. Soc. Am. B 11, 2547–2552.

    Article  Google Scholar 

  6. Pfeifer, T., Heiliger, H.-M., Roskos, H. G., and Kurz, H. (1995) Generation and detection of picosecond electric pulses with freely positionable photoconductive probes, IEEE Trans. Microwave Theory Tech. 43, 2856–2862.

    Article  Google Scholar 

  7. Heiliger, H.-M., Pfeifer, T., Roskos, H. G., Kurz (1996) External photoconductive switches as generators and detectors of picosecond transients, Microelectronic Engineering 31, 415–426.

    Article  Google Scholar 

  8. Hwang, J.-R., Cheng, H.-J., Whitaker, J. F., and Rudd, J.V. (1996) Photoconductive sampling with an integrated source follower/amplifier, Appl. Phys. Lett. 68, 1464–1466.

    Article  Google Scholar 

  9. Lai, R. K., Hwang, J.-R., Nees, J., Norris, T. B., Whitaker, J. F. (1996, in press) A fiber-mounted, micro-machined photoconductive probe with 15 nV/Hz1/2 sensitivity, Appl, Phys. Lett.

    Google Scholar 

  10. Heiliger, H.-M., Vossebürger, M., Roskos, H. G., Kurz, H., Hey, R. and Ploog, K. (1996, in press) Application of lift-off low-temperature-grown GaAs on transparent substrates for THz signal generation, Appl. Phys. Lett.

    Google Scholar 

  11. Weiss, S., Botkin, D., Ogletree, D. F, Salmeron, M., and Chemla, D. S., (1995) The ultrafast response of a scanning tunneling microscope, Phys. Stat. Solidi B 188, 343.

    Article  Google Scholar 

  12. Groeneveld, R. H. M., Rasing, T., Kaufmann, L. M. F., Smalbrugge, E., Wolter, J. H., Melloch, M. R., and van Kempen, H. (1996) New optoelectronic design for ultrafast scanning tunneling microscopy, J. Vac. Sei. Technol. B 14, 861–863.

    Article  Google Scholar 

  13. Wu, Q., Hewitt, T. D., and Zhang, X.-C. (1996) Two-dimensional electro-optic imaging of THz beams, Appl. Phys. Lett. 69, 1026–1028.

    Article  Google Scholar 

  14. Pfeifer, T. Heiliger, H.-M., Stein von Kamienski, E., Roskos, H. G., Kurz, H. (1995) Charge accumulation effects and microwave absorption of coplanar waveguides fabricated on high-resistivity Si with SiO2 insulation layer, Appl. Phys. Lett. 67, 2624–2626.

    Article  Google Scholar 

  15. Pfeifer, T., Heiliger, H.-M., Löffler, T., Roskos, H. G., and Kurz, H. (1996) Picosecond optoelectronic on-wafer characterization of coplanar waveguides on high-resistivity Si and Si/SiCO2 substrates, Microelectronic Engineering 31, 385–195.

    Article  Google Scholar 

  16. Pfeifer, T., Löffler, T., Roskos, H. G., Kurz, H., Singer, M., and Biebl, E. M. (1996) Electrooptic measurement of the electric near field distribution of a 7 GHz planar resonator, Electron. Lett. 32 1305–1307.

    Article  Google Scholar 

  17. Pfeifer, T., Löffler, T., Roskos, H. G., Kurz, H., Singer, M., and Biebl, E. M. (submitted) Electro-optic near field mapping of planar resonators, IEEE Trans. Antenna and Propagat.

    Google Scholar 

  18. Pfeifer, T., Roskos, H. G., Kurz, H., Strohm, K. M., and Luy, J.F. (submitted) Electric near-field radiation of a 76-GHz SIMMWIC dipole resonator for automotive applications, IEEE Microwave and Guided Wave Lett.

    Google Scholar 

  19. Lüpke, G., Meyer, C, Ohlhoff, C., Kurz, H., Lehmann, S., and Marowsky, G. (1995) Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media, Opt. Lett. 20, 1997–1999.

    Article  Google Scholar 

  20. Ohlhoff, C., Meyer, C., Lüpke, G., Löffler, T., Pfeifer, T., Roskos, H. G., and Kurz, H. (1996) Optical second-harmonic probe for silicon millimeter-wave circuits, Appl. Phys. Lett. 68, 1699–1701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roskos, H.G., Pfeifer, T., Heiliger, HM., Löffler, T., Kurz, H. (1997). Electrooptic and Photoconductive Techniques for Probing and Imaging of THz Electric Signals. In: Chamberlain, J.M., Miles, R.E. (eds) New Directions in Terahertz Technology. NATO ASI Series, vol 334. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5760-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5760-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4537-4

  • Online ISBN: 978-94-011-5760-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics