Skip to main content

Non-Local Response of Composite Materials in Microwave Range

  • Chapter
Advances in Complex Electromagnetic Materials

Part of the book series: NATO ASI Series ((ASHT,volume 28))

Abstract

Composite materials have recently found wide industrial use. This in turn demands development of more sophisticated descriptions of an interaction of electromagnetic waves with such inhomogeneous systems. Commonly, for this aim the macroscopic Maxwell equations are employed. These equations are obtained by homogenization (averaging) of the microscopic Lorentz equations and contain additional unknown fields: magnetic field \(\vec H\) and electrical induction \(\vec D\). To complete the system, one needs to introduce, so-called, constitutive relations connecting these new fields with the averaged values of the electric \(\vec E\) and magnetic \(\vec B\) fields. Although there exists a well developed theory of constitutive relations for materials without dispersion and with temporal dispersion, we still have run into obstacles while describing system with spatial dispersion. This communication is devoted to some issues of spatial dispersion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landauer, R. (1978) Electrical conductivity in inhomogeneous media, in J.C. Garland and D.B. Tanner (Eds.), Proc. of AIP Conference, 40, New York,American Institute of Physics, 2–45.

    Google Scholar 

  2. Bergman, D. J., Stroud, D. (1992) Physical properties of macroscopically inhomogeneous media, Solid. St. Phys., 46, 148–269.

    Google Scholar 

  3. Lagarkov, A. N., Sarychev, A. K., Smychkovich, Yu. R., and Vinogradov, A. P. (1992) Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites, J. Electro. Waves Applic. 6, 1159–1176.

    Google Scholar 

  4. Sanchez-Palencia, E. (1980) Non-Homogeneous Media and Vibration Theory, Springer Verlag, New York.

    MATH  Google Scholar 

  5. Bakhvalov, N. S., Panasenko G. P. (1989) Homogenization. Averaging processes in periodic media, in Mathematical Problems in the Mechanics of Composite Materials, Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  6. Velikhov, E. P., Dykhne, A. M., (1963) in Proc. VI Int. Symp. Ion. Phen. in Gases, Paris, 511.

    Google Scholar 

  7. Brekhovskikh, I. M. (1960) Waves in Layered Media Academic Press, New York.

    Google Scholar 

  8. Vinogradov, A.P., Panina, L. V., Sarychev, A.K. (1989) Method for calculating the dielectric constant and magnetic permeability in percolating systems, Sov. Phys. Dokl. 34, 530–532.

    Google Scholar 

  9. Schelkunoff, S. A. and Priis, H. T. (1952) Antenna Theory and Practice, Wiley, New York.

    Google Scholar 

  10. Lewin, L (1975) Theory of Waveguides., Newnes-Butterworths, London.

    Google Scholar 

  11. Jaggard, D. L., Mickelson, A. R., and Papas, C. H. (1979) On electromagnetic waves in chirai media, Appl. Phys. 18, 211–216.

    Article  Google Scholar 

  12. Lakhtakia, A., Varadan, V. K., Varadan, V.V. (1989) Time-harmonic Electromagnetic Fields in Chirai Media, Lecture Notes in Physics 335, Springer, New York.

    Google Scholar 

  13. Lindell, I. V., Sihvola, A.H., Tretyakov, S.A., Viitanen A.J. (1994) Electromagnetic Waves in Chirai and Bi-Isotropic Media, Artech House, Boston.

    Google Scholar 

  14. Kukolev, I. V., Lagarkov, A.N., Matitsin, S. M., Rosanov, K. N., and Vinogradov A. P. (1992) Investigation of effective magnetic permeability of inhomogeneous dielectric materials at microwaves, in Proc. of the Material Research Society Spring Meeting, San Francisco No. L6.14.

    Google Scholar 

  15. Landau, L.D., Lifehitz, E.M. (1982) Electrodynamics of Continuous Media, Pergamon Press, New York.

    Google Scholar 

  16. Born, M. (1933) Optik, Springer, Berlin (in German).

    Book  Google Scholar 

  17. Golubkov, A.A., Makarov, V.A. (1995) Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion, Uspekhi Fizicheskikh Nauk 165, 339–346 (in Russian)

    Article  Google Scholar 

  18. Silin, V.P., Rukhadze, A.A. (1961) Electromagnetic Properties of Plasma and Plasma-like Media, GosAtomIzdat, Moscow (in Russian).

    Google Scholar 

  19. Ryazanov, I.M. (1987) Electrodynamics of Condensed Matter, (in Russian).

    Google Scholar 

  20. Vinogradov, A.P. (1993) Microscopic properties of a chiral object, in Ari Sihvola, Sergei Tretyakov, Igor Semchenko (Eds.) Proc. Int. Seminar on Electrodynamics of Chiral and Bianisotropic Media Bianisotropics’93, Helsinki University of Technology, Electromagnetics Laboratory Report 159.

    Google Scholar 

  21. Stanley, H.E. (1971) Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford.

    Google Scholar 

  22. Rytov, S.M. (1955) J. Experimental and Theoretical Physics (JETF), 29, 5 (in Russian)

    Google Scholar 

  23. Vinogradov, A.P., Romanenko, V.E. (1995) Artificial magnetics based on racemic helix inclusions, in A. Sihvola et al. (Eds.), Proc. of 4th Intl. Conf. on Chiral, Bi-isotropic and Bi-anisotropic Media, CEIRAL’95, The Pennsylvania State University, State College, pp. 143–148.

    Google Scholar 

  24. Ryghov, Yu.A., Tamoikin, V.V. (1970) Radiation and transmitance of electromagnetic waves in randomly inhomogeneous media, Radifizika, 13, 356 (in Russian).

    Google Scholar 

  25. Hoppe, D.J., Rahmat-Samii, Y. (1995) Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, Washington.

    Google Scholar 

  26. Senior, T. B. A., Volakis, J.L. (1995) Approximate Boundary Conditions in Electromagnetics, The IEE Press, London.

    Book  MATH  Google Scholar 

  27. Agranovich, V.M., Yudson, V.I. (1973) Boundary conditions in media with spatial dispersion, Opt. Com. 7, 121–124.

    Article  Google Scholar 

  28. Maradudin, A.A., Mills, D.L. (1973) Effect of spatial dispersion on the properties of a semi-infinite dielectric, Phys. Rev. B 7, 2787–2810.

    Article  Google Scholar 

  29. Agarwal, G.S., Pattanayak, D.N., Wolf, E. (1974) Phys. Rev. B 8, 1447–1463.

    Article  MathSciNet  Google Scholar 

  30. Birman, J.L. (1982) Chapter 2, in J.L. Birman (Ed.) Excitons, North Holland Co.

    Google Scholar 

  31. Agranovich, V.M., Ginzburg, V.L. (1966) Spatial Dispersion in Crystal Optics and the Theory of Excitons, Interscience, New York.

    Google Scholar 

  32. Busarov, I.G., Lagarkov, A.N., Sterlina, I.G., Vinogradov, A.P. (1992) Interaction of electromagnetic waves with heterogeneous systems. Non-Presnels type of reflection, in Proc. of the International Conference STATPHYS 18, Berlin, pp. 269–280.

    Google Scholar 

  33. Vinogradov A.P., Lagarkov, A.N., Romanenko, V.E. (1996) Effects of spatial dispersion in composite materials at mw range, Doclady Acdemii Nauk, 349, 182–184 (in Russian).

    Google Scholar 

  34. Stewart, J.E., Gallaway, W.S. (1962) Diffraction anomalies in grating spectrophotometers Applied Optics 1, 421–427.

    Article  Google Scholar 

  35. Hessel, A., Oliner, A.A. (1965) A new theory of Wood’s anomalies on optical gratings, Applied Optics 4, 1275–1281.

    Article  Google Scholar 

  36. Palmer, C.H., Evering, F.C., and Nelson, F.M. (1965) Diffraction anomalies for gratings of rectengular profile, Appl. Opt. 4, 1271–1278.

    Article  Google Scholar 

  37. Botten, L.C., Craig, M.S., McPhedran, R.C., Adams, J. L., and Andrewartha, J. R. (1981) The finitely conducting lamellar diffraction grating, Optica Acta 28, 1087–1101.

    Article  MathSciNet  Google Scholar 

  38. Botten, L.C., Craig, M.S., McPhedran, R. C. (1981) Highly conducting lamellar diffraction gratings, Optica Acta 8, 1103–1109.

    Article  MathSciNet  Google Scholar 

  39. McPhedran, R.C., Waterworth, M.D. (1972) A theoretical demonstration of properties of grating anomalies (S-polarization), Optica Acta 19, 877–891.

    Google Scholar 

  40. McPhedran, R.C., Botten, L.C., Craig, M.S., Neviere, M., and Maystre, D., (1982) Lossy lamellar gratings in the quasistatic limit, Optica Acta 29, 289–294.

    Article  MathSciNet  Google Scholar 

  41. Burckhardt, C.B. (1966) Diffraction of a plane wave at a sinusoidally stratified dielectric grating, J. Opt. Soc. of Am. 56, 1502–1511.

    Article  Google Scholar 

  42. Kaspar, F.G. (1973) Diffraction by thick, periodically stratified grating with complex dielectric constant, J. Opt. Soc. of Am. 63, 37–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lagarkov, A.N., Vinogradov, A.P. (1997). Non-Local Response of Composite Materials in Microwave Range. In: Priou, A., Sihvola, A., Tretyakov, S., Vinogradov, A. (eds) Advances in Complex Electromagnetic Materials. NATO ASI Series, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5734-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5734-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6418-7

  • Online ISBN: 978-94-011-5734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics