Skip to main content

Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter

  • Chapter

Part of the book series: Advances in vegetation science ((AIVS,volume 17))

Abstract

Attenuation of ultraviolet (UV)-radiation into the water column is highly correlated with the concentration of the dissolved organic matter (DOM). Thus UV penetrates deeper into marine waters than into freshwater systems. DOM is efficiently cleaved by solar surface radiation levels consuming more oxygen than bacterial metabolism. This photolytically cleaved DOM exhibits higher absorbance ratios (250/365 nm) than untreated DOM. Natural bacterioplankton reach higher abundance if inoculated in previously solar-exposed DOM than in untreated DOM; during bacterial growth the absorbance ratio declines steadily indicating the utilization of the photolytically cleaved DOM. On the other hand, bacterioplankton are greatly reduced in their activity if exposed to surface solar radiation levels. Photoenzymatic repair of DNA induced by UV-A radiation, however, leads to an efficient recovery of bacterial activity once the UV-B stress is released. Turbulent mixing of the upper layers of the water column leads to a continuous alteration of the UV exposure regime. Close to the surface, bacteria and DOM are exposed to high levels of UV-B leading to a reduction in bacterial activity and to photolysis of DOM. Once mixed into deeper layers where UV-B is attenuated, but sufficient UV-A is remaining to allow photoenzymatic repair, the photolytically cleaved DOM is efficiently taken up by bacterioplankton leading to even higher bacterial activity than prior to the exposure. Thus, the overall effect of UV on bacterioplankton is actually an enhancement of bacterial activity despite their lack of protective pigments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amador, J.A., Alexander, M. & Zika, R.G. 1989. Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. Environ. Microbiol. 55: 2843–2849.

    PubMed  CAS  Google Scholar 

  • Andreae, M.O. & Barnard, W.R. 1984. The marine chemistry of dimethylsulfide. Mar. Chem. 14: 267–279.

    Article  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. & Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Backlund, P. 1992. Degradation of aquatic humic material by ultraviolet light. Chemosphere 25: 1869–1878.

    Article  CAS  Google Scholar 

  • Baker, K.S. & Smith, R.C. 1982. Spectral irradiance penetration in natural waters, pp. 233–246. In: Clakins, J. (ed.) The Role of Solar Ultraviolet Radiation in Marine Ecosystems. Plenum Press, New York, USA.

    Google Scholar 

  • Behrenfeld, M., Hardy, J., Gucinski, H., Hanneman, A., II, H.L. & Wones, A. 1993. Effects of ultraviolet-B radiation on primary production along latitudinal transects in the South Pacific Ocean. Mar. Environ. Res. 35: 349–363.

    Article  Google Scholar 

  • Behrenfeld, M.J., Hardy, J.T. & Lee, III, H. 1992. Chronic effects of ultraviolet-B radiation on growth and cell volume of Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 28: 757–760.

    Article  Google Scholar 

  • Blumthaler, M. & Ambach, W. 1990. Indication of increasing solar ultraviolet-B radiation flux in Alpine regions. Science 248: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, C.E. & Houghton, J.A. 1976. A study of the effects of near UV radiation on the pigmentation of the blue-green alga Gloecapsa alpicola. Arch. Microbiol. 107: 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Buma, A.G.J., Hannen, E.J.V., Roza, L., Veldhuis, M.J.W. & Gieskes, W.W.C. 1995. Monitoring ultraviolet-B induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. J. Phycol. 31: 514–521.

    Article  Google Scholar 

  • Charriere, B., Gadel, F. & Serve, L. 1991. Nature and distribution of phenolic compounds in water and sediments from the Mediterranean deltaic and lagunal environments. Hydrobiologia 222: 89–100.

    Article  CAS  Google Scholar 

  • Chin, Y.P., Aiken, G. & O’Loughlin, E. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28: 1853–1858.

    Article  PubMed  CAS  Google Scholar 

  • Cho, B.C. & Azam, F. 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphoric zone. Mar. Ecol. Prog. Ser. 63: 253–259.

    Article  CAS  Google Scholar 

  • Cullen, J.C., Neale, P.J. & Lesser, M.P. 1992. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258: 1646–1650.

    Article  Google Scholar 

  • Cullen, J.J. & Lesser, M.P. 1991. Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom. Mar. Biol. 111: 183–190.

    Article  Google Scholar 

  • Cullen, J.J. & Neale, P.J. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynthesis Res. 39: 303–320.

    Article  CAS  Google Scholar 

  • Davies-Colley, R.J. 1992. Yellow substance in coastal and marine waters round the South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 26: 311–322.

    Article  CAS  Google Scholar 

  • DeHaan, H. 1993. Solar UV-Iight penetration and photodegradation of humic substances in peaty lake water. Limnol. Oceanogr. 38: 1072–1076.

    Article  Google Scholar 

  • Döhler, G. 1984. Effect of UV-B radiation on biomass production, pigmentation and protein content of marine diatoms. Z. Naturforsch. 39c: 634–638.

    Google Scholar 

  • Ducklow, H.W. & Fasham, M.J.R. 1992. Bacteria, in the greenhouse: Modeling the role of oceanic plankton in the global carbon cycle, pp. 1–32. In: Mitchell, R. (ed.) Environmental Microbiology. Wiley-Liss, New York, USA.

    Google Scholar 

  • Ekelund, N.G.A. 1991. The effects of UV-B radiation on dinoflagel-lates. J. Plant. Physiol. 138: 274–278.

    Article  CAS  Google Scholar 

  • Fleischmann, E.M. 1989. The measurement and penetration of ultraviolet radiation into tropical marine water. Limnol. Oceanogr. 34: 1623–1629.

    Article  Google Scholar 

  • Friedberg, E.C. 1985. DNA repair. W.H. Freeman and Company, New York, USA.

    Google Scholar 

  • Friindl, R., Guggenberger, G., Haider, K., Knicker, H., Kögel-Knabner, I., Lüdemann, H.-D., Luster, J., Zech, W. & Spiteller, M. 1994. Recent advances in the spectroscopic characterization of soil humic substances and their ecological significance. Z. Pflanzenernähr. Bodenkd. 157: 175–186.

    Article  Google Scholar 

  • Fuhrman, J.A., Sleeter, T.D., Carlson, C.A. & Proctor, L.M. 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57: 207–217.

    Article  Google Scholar 

  • Garcia-Pichel, F. 1994. A model for the internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol. Oceanogr. 39: 1704–1717.

    Article  Google Scholar 

  • Häder, D.-P. & Liu, S.-M. 1990. Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense. FEMS Microbiol. Ecol. 73: 331–338.

    Article  Google Scholar 

  • Häder, D.-P., Worrest, R.C., Kumar, H.D. & Smith, R.C. 1995. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio 24: 174–180.

    Google Scholar 

  • Helbing, E.W., Villafañe, V. & Holm-Hansen, O. 1994. Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing, pp. 207–227. In: Weiler, C.S. & Penhale, P.A. (eds.) Ultraviolet Radiation in Antarctica: Measurements and biological Effects. American Geophysical Union, Washington, USA.

    Google Scholar 

  • Helbing, E.W., Villafañe, V., Ferrario, M. & Holm-Hansen, O.1992. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 80: 89–100.

    Article  Google Scholar 

  • Herndl, G.J. 1991. Microbial biomass dynamics along a trophic gradient at the Atlantic Barrier Reef off Belize (Central America). P.S.Z.N.I: Mar. Ecol. 12: 41–51.

    Article  Google Scholar 

  • Herndl, G.J., Miiller-Niklas, G. & Frick, J. 1993. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361: 717–719.

    Article  Google Scholar 

  • Hofmann, D.J., Deshler, T.L., Aimedieu, P., Matthews, W.A., Johnston, P.V., Kondo, Y., Sheldon, W.R., Byrne, G.J. & Benbrook, J.R. 1989. Stratospheric clouds and ozone depletion in the Arctic during January 1989. Nature 340: 117–121.

    Article  CAS  Google Scholar 

  • Hofmann, D.J., Oltmans, S.J., Harris, J.M., Solomon, S., Deshler, T. & Johnson, B.J. 1992. Observation and possible causes of new ozone depletion in Antarctica in 1991. Nature 359: 283–287.

    Article  CAS  Google Scholar 

  • Hubberten, U., Lara, R.J. & Kattner, G. 1994. Amino acid composition of seawater and dissolved humic substances in the Greenland Sea. Mar. Chem. 45: 121–128.

    Article  CAS  Google Scholar 

  • Jagger, J. 1975. Inhibition by sunlight of the growth of E. coli B/r. Photochem. Photobiol. 22: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, W.H., Pledger, R.J., Aas, P., Hager, S., Coffin, R.B., Haven, R.v. & Mitchell, D.L. 1996. Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar. Ecol. Prog. Ser. 137: 283–291.

    Article  CAS  Google Scholar 

  • Jerlov, N.G. 1950. Ultra-violet radiation in the sea. Nature 166: 111–112.

    Article  PubMed  CAS  Google Scholar 

  • Karentz, D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms, pp. 93–110. In: Weiler, C.S. & Penhale, P.A. (eds.) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, USA.

    Google Scholar 

  • Karentz, D., Bothwell, M.L., Coffin, R.B., Hanson, A., Herndl, G.J., Kilham, S.S., Lesser, M.P., Lindell, M., Moeller, R.E., Morris, D.P., Neale, P.J., Sanders, R.W., Weiler, C.S. & Wetzel, R.G. 1994. Impact of UV-B radiation on pelagic freshwater ecosystems: report of the working group on bacteria and phytoplankton. Arch. Hydrobiol. Beiheft 43: 31–69.

    Google Scholar 

  • Karentz, D., Cleaver, J.E. & Mitchell, D.L. 1991a. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol. 27: 326–341.

    Article  CAS  Google Scholar 

  • Karentz, D., Cleaver, J.E. & Mitchell, D.L. 1991b. DNA damage in Antarctic. Nature 350: 28.

    Article  Google Scholar 

  • Kieber, R.J., Zhou, X. & Mopper, K. 1990. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol. Oceanogr. 35: 1503–1515.

    Article  CAS  Google Scholar 

  • Kirk, J.T.O., Hargreaves, B.R., Morris, D.P., Coffin, R.B., David, B., Frederickson, D., Karentz, D., Lean, D.R.S., Lesser, M.P., Madronich, S., Morrow, J.H., Nelson, N.B. & Scully, N.M. 1994. Measurements of UV-B radiation in two freshwater lakes: an instrument intercomparison. Arch. Hydrobiol. Beiheft 43: 71–99.

    Google Scholar 

  • Lara, R.J., Hubberten, U. & Kattner, G. 1993. Contribution of humic substances to the dissolved nitrogen pool in the Greenland Sea. Mar. Chem. 41: 327–336.

    Article  CAS  Google Scholar 

  • Lorenzen, C.J. 1979. Ultraviolet radiation and phytoplankton photosynthesis. Liranol. Oceanogr. 24: 1117–1120.

    Article  Google Scholar 

  • Miller, R.V. & Kojohn, T.A. 1990. General microbiology of rec A: environmental and evolutionary significance. Annu. Rev. Microbiol. 44: 365–394.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.L. 1994. Recent advances in the photochemistry fonatural dissolved organic matter, pp. 111–127. In: Helz, G.R., Zepp, R.G. & Crosby, D.G. (eds.) Aquatic and Surface Photochemistry. Lewis Publishers, Boca Raton., USA.

    Google Scholar 

  • Mitchell, D.L. 1988. lie induction and repair of lesions produced by the photolysis of (6-4) photoproducts in normal and UV-hypersensitive human cells. Mut. Res. 194: 227–237.

    Article  CAS  Google Scholar 

  • Mitchell, D.L., Applegate, L.A., Nairn, R.S. & Ley, R.D. 1990. Photoreactivation of cyclobutane dimers and (6-4) photoproducts in the epidermis of the marsupial, Monodelphis domestica. Photochem. Photobiol. 51: 653–658.

    PubMed  CAS  Google Scholar 

  • Mopper, K. & Stahovec, W.L. 1986. Sources and sinks of low molecular weight organic carbonyl compounds in seawater. Mar. Chem. 19: 305–321.

    Article  CAS  Google Scholar 

  • Mopper, K., Zhou, X., Kieber, R.J., Kieber, D.J., Sikorski, R.J. & Jones, R.D. 1991. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62.

    Article  CAS  Google Scholar 

  • Moran, M.A. & Hodson, R.E. 1992. Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity. Microbiol Ecol. 24: 161–170.

    Article  Google Scholar 

  • Moran, M.A. & Hodson, R.E. 1994. Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnol. Oceanogr. 39: 762–771.

    Article  CAS  Google Scholar 

  • Miiller-Niklas, G., Heissenberger, A., Puskaric, S. & Herndl, G.J. 1995. Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquat. Microbiol. Ecol. 9: 111–116.

    Article  Google Scholar 

  • Neale, P.J., Lesser, M.P. & Cullen, J.J. 1994. Effects of ultraviolet radiation on the photosanthesis of phytoplankton in the vicinity of McMurdo Station, Antarctica, pp. 125–142. In: Weiler, C.S. & Penhale, P.A. (eds.) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, USA.

    Chapter  Google Scholar 

  • Prezelin, B.B., Boucher, N.P. & Smith, R.C. 1994. Marine primary production under the influence of the Antarctic ozone hole: ice-colors′90, pp. 159–186. In: Weiler, C.S. & Penhale, P.A. (eds.), Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, USA.

    Chapter  Google Scholar 

  • Sancar, A. & Sancar, G.B. 1988. DNA repair enzymes. Ann. Rev. Biochem. 57: 29–67.

    Article  PubMed  CAS  Google Scholar 

  • Scully, N.M. & Lean, D.R.S. 1994. The attenuation of ultraviolet radiation in temperate lakes. Arch. Hydrobioi. Beiheft 43: 135–144.

    Google Scholar 

  • Smith, R.C. 1989. Ozone, middle ultraviolet radiation and the aquatic environment. Photochem. Photobiol. 50: 459–468.

    Article  CAS  Google Scholar 

  • Smith, R.C. & Baker, K.S. 1981. Optical properties of the clearest natural water (200–800 nm). Appl. Opt. 20: 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Vernet, M., Brody, E.A., Holm-Hansen, O. & Mitchell, B.G. 1994. The response of Antarctic phytoplankton to ultraviolet radiation: absroption, photosynthesis, and taxonomic composition, pp. 143–158. In: Weiler, C.S. & Penhale, P.A. (eds.) Ultraviolet Radiation in Antarctica: Measurements and biological Effects. American Geophysical Union, Washington, USA.

    Chapter  Google Scholar 

  • Wawer, C. & Muyzer, G. 1995. Genetic diversity of Desulfovibrio spp. in envirownental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61: 2203–2210.

    PubMed  CAS  Google Scholar 

  • Wetzel, R.G. 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    Article  CAS  Google Scholar 

  • Worrest, R.C. 1983. Impact of solar ultraviolet-B radiation (290–320 nm) upon marine microalgae. Physiol. Plant. 58: 429–434.

    Article  Google Scholar 

  • Worrest, R.C. & Häder, D.-P. 1989. Effects of stratospheric ozone depletion on marine organisms. Environ. Conserv. 16: 261–263.

    Article  CAS  Google Scholar 

  • Zepp, R.G., Callaghan, T.V. & Erickson, D.J. 1995. Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio 24: 181–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herndl, G.J. et al. (1997). Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. In: Rozema, J., Gieskes, W.W.C., Van De Geijn, S.C., Nolan, C., De Boois, H. (eds) UV-B and Biosphere. Advances in vegetation science, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5718-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5718-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6411-8

  • Online ISBN: 978-94-011-5718-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics