Skip to main content

Naive Realism about Operators

  • Chapter
Probability, Dynamics and Causality
  • 311 Accesses

Abstract

A source of much difficulty and confusion in the interpretation of quantum mechanics is a “naive realism about operators.” By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about “measuring operators” that occurs when the subject is quantum mechanics. Without a specification of what should be meant by “measuring” a quantum observable, such an expression can have no clear meaning. A definite specification is provided by Bohmian mechanics, a theory that emerges from Schrödinger’s equation for a system of particles when we merely insist that “particles” means particles. Bohmian mechanics clarifies the status and the role of operators as observables in quantum mechanics by providing the operational details absent from standard quantum mechanics. It thereby allows us to readily dismiss all the radical claims traditionally enveloping the transition from the classical to the quantum realm- for example, that we must abandon classical logic or classical probability. The moral is rather simple: Beware naive realism, especially about operators!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, D. Z.: 1992, Quantum Mechanics and Experience, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Bell, J. S.: 1964, ‘Onthe Einstein-Podolski-Rosen Paradox’, Physics 1, 195–200. Reprinted in Bell 1987.

    Google Scholar 

  • Bell, J. S.: 1966, ‘On the problem of hidden variables in quantum mechanics’, Review of Modern Physics 38, 447–452. Reprinted in Bell 1987.

    Article  MATH  Google Scholar 

  • Bell, J. S.: 1981, ‘Quantum mechanics for cosmologists’, in Quantum Gravity 2, C. Isham, R. Penrose, and D. Sciama (eds.), Oxford University Press, New York, pp. 611–637. Reprinted in Bell 1987.

    Google Scholar 

  • Bell, J. S.: 1982, ‘On the impossible pilot wave’, Foundations of Physics 12, 989–999. Reprinted in Bell, 1987.

    Article  MathSciNet  Google Scholar 

  • Bell, J. S.: 1987, Speakable and unspeakable in quantum mechanics, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bell, J. S.: 1990, ‘Against “measurement”’, Physics World 3, 33–40. [Also appears in’ sixty-two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics’, Plenum Press, New York, pp. 17–31.]

    Google Scholar 

  • Beltramerti, E. G. and Cassinelli, G.: 1981, The Logic of Quantum Mechanics, Reading, Mass.

    Google Scholar 

  • Berndl, K., Dürr, D., Goldstein, S., and Zanghi, N.: 1996, ‘EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory’, quant-ph/9510027, preprint. (To appear in Physical Review A, April 1996.)

    Google Scholar 

  • Berndl, K., Dürr, D., Goldstein, S., Peruzzi G., and Zanghi, N.: 1995, ‘On the Global Existence of Bohmian Mechanics’, Communications in Mathematical Physics 173, 647–673.

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff, G. and von Neumann, J.: 1936, ‘The logic of Quantum Mechanics’, Ann. Math. 37.

    Google Scholar 

  • Böhm, D.: 1952, ‘A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II,’ Physical Review 85, 166–193. Reprinted in Wheeler and Zurek 1983, pp. 369–396.

    Article  Google Scholar 

  • Bohm, D. and Hiley, B. J.: 1993, The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge & Kegan Paul, London.

    Google Scholar 

  • Daumer, M., Dürr, D., Goldstein, S., and Zanghì, N.: 1996, ‘On the role of operators in quantum theory’, in preparation.

    Google Scholar 

  • Davies, E. B.: 1976, Quantum Theory of Open Systems, Academic Press, London.

    MATH  Google Scholar 

  • De Witt, B. S. and Graham, N. (eds.): 1973, The Many-Worlds interpretation of Quantum Mechanics, Princeton, N.J..

    Google Scholar 

  • Dieks, D.: 1991, ‘On some alleged difficulties in interpretation of quantum mechanics’, Synthese 86, 77–86.

    Article  MathSciNet  Google Scholar 

  • Dürr, D., Goldstein, S., and Zanghì, N.: 1992, ‘Quantum Equilibrium and the Origin of Absolute Uncertainty’, Journal of Statistical Physics 67, 843–907; “Quantum Mechanics, Randomness, and Deterministic Reality,” Physics Letters A 172, 6–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Dürr, D., Goldstein, S., and Zanghì, N.: 1996, ‘Bohmian Mechanics as the Foundation of Quantum Mechanics’, in Bohmian Mechanics and Quantum Theory: An Appraisal, J. Cushing, A. Fine and S. Goldstein (eds.), Kluwer Academic Press.

    Google Scholar 

  • Everett, H.: 1957, ‘Relative state formulation of quantum mechanics’, Review of Modern Physics 29, 454–462. Reprinted in De Witt et al. 1973, and Wheeler et al. 1983.

    Article  MathSciNet  Google Scholar 

  • Gell-Mann, M. and Hartle, J. B.: 1993, ‘Classical Equations for Quantum Systems’, Physical Review D 47, 3345–3382.

    Article  MathSciNet  Google Scholar 

  • Ghirardi, G. C., Rimini, A., and Weber, T.: 1986, ‘Unified Dynamics for Microscopic and Macroscopic Systems’, Physical Review D 34, 470–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghirardi, G. C., Pearle, P., and Rimini, A.: 1990, ‘Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles’, Physical Review A 42, 78–89.

    Article  MathSciNet  Google Scholar 

  • Ghirardi, G. C., Grassi, R., and Benatti, F.: 1995, ‘Describing the Macroscopic World: Closing the Circle within the Dynamical Reduction Program’, Foundations of Physics 23, 341–364.

    Article  MathSciNet  Google Scholar 

  • Gleason, A. M: 1957, ‘Measures on the Closed Subspaces of a Hilbert Space’, Journal of Mathematics and Mechanics 6, 885–893.

    MathSciNet  MATH  Google Scholar 

  • Griffiths, R. B: 1984, ‘Consistent Histories and the Interpretation of Quantum Mechanics’ Journal of Statistical Physics 36, 219–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, S.: 1987, ‘Stochastic Mechanics and Quantum Theory’, Journal of Statistical Physics 47, 645–667.

    Article  MathSciNet  Google Scholar 

  • Jauch, J. M. and Piron, C.: 1963, ‘Can Hidden Variables be Excluded in Quantum Mechanics?’, Helvetica Phisica Acta 36, 827–837.

    MathSciNet  MATH  Google Scholar 

  • Jauch, J. M.: 1968, Foundations of Quantum Mechanics, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Holland, P. R.: 1993, The Quantum Theory of Motion, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kochen, S. and Specker, E. P.: 1967, ‘The Problem of Hidden Variables in Quantum Mechanics’, Journal of Mathematics and Mechanics 17, 59–87.

    MathSciNet  MATH  Google Scholar 

  • Kochen, S.: ‘A New Interpretation of Quantum Mechanics’, in P. Lathi and P. Mittelstaedt (eds.), Symposium on the Foundations of Modern Physics, World Scientific, Singapore.

    Google Scholar 

  • Mott, N. F: 1929, Proceedings of the Royal Society A 124, 440.

    Google Scholar 

  • Nelson, E.: 1966 ‘Derivation of the Schrödinger Equation from Newtonian Mechanics’, Physical Review 150, 1079–1085.

    Article  Google Scholar 

  • Nelson, E.: 1985 Quantum Fluctuations, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Omnès, R.: 1988, ‘Logical Reformulation of Quantum Mechanics I’, Journal of Statistical Physics 53, 893–932.

    Article  MathSciNet  MATH  Google Scholar 

  • von Neumann, J.: 1932, Mathematische Grundlagen der Quantenmechanik Springer Verlag, Berlin. English translation: 955, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Schrödinger, E.: 1935, ‘Die gegenwärtige Situation in der Quantenmechanik,’ Die Naturwissenschaften 23, 807–812, 824–828, 844–849. [Also appears in translation as “The Present Situation in Quantum Mechanics,” in Wheeler and Zurek 1983, pp. 152–167.]

    Article  Google Scholar 

  • van Fraassen, B.: 1991, Quantum Mechanics, an Empiricist View, Oxford University Press, Oxford.

    Google Scholar 

  • Wheeler, J. A. and Zurek, W. H. (eds.): 1983, Quantum Theory and Measurement, Princeton University Press, Princeton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Daumer, M., Dürr, D., Goldstein, S., Zanghì, N. (1997). Naive Realism about Operators. In: Costantini, D., Galavotti, M.C. (eds) Probability, Dynamics and Causality. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5712-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5712-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6409-5

  • Online ISBN: 978-94-011-5712-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics