Advertisement

Test of the Violation of Local Realism in Quantum Mechanics with No Use of Bell’s Inequalities

  • G. Di Giuseppe
  • F. De Martini
  • D. Boschi

Abstract

A novel and versatile polarization-entanglement scheme is adopted to investigate the violation of the EPR local realism for a non-maximally entangled two-photon system according to the recent “nonlocality proof” by Lucien Hardy. In this context the adoption of a sophisticated detection method allows direct determination of any “element of physical reality” (viz., determined “with probability equal to unity” in the words of Einstein, Podolsky and Rosen) for the pair system within complete measurements that are largely insensitive to the detector quantum-efficiencies and noise.

Keywords

Physical Reality Photon Pair Local Realism Logical Contradiction Pair System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., Grangier, R, and Roger, G.: 1981, Phys. Rev. Lett. 47, 460.CrossRefGoogle Scholar
  2. Aspect, A., Grangier, P., Roger, G., and Dalibard, J.: 1982, Phys. Rev. Lett. 49, 1804.MathSciNetCrossRefGoogle Scholar
  3. Bell, J. S.: 1964, Physics 1, 195.Google Scholar
  4. Brown, H. R., and Svetlichny, G.: 1990, Found of Phys. 20, 1379.MathSciNetCrossRefGoogle Scholar
  5. Chiao, R., and Aharonov, Y.: ‘Sixtieth Birthday Festschrift Manuscript’, (unpublished).Google Scholar
  6. De Caro L., and Garuccio, A.: 1994, Phys. Rev. A 50, R2803.CrossRefGoogle Scholar
  7. Eberhard, P. H.: 1993, Phys. Rev. A 47, 748.CrossRefGoogle Scholar
  8. Einstein, A., Podolsky, B., and Rosen, N.: 1935, Phys. Rev. 47, 777.MATHCrossRefGoogle Scholar
  9. Garuccio, A.: 1995, Phys. Rev. A 72, 2535.CrossRefGoogle Scholar
  10. Goldstein, S.: 1994, Phys. Rev. Lett. 72, 1951.CrossRefGoogle Scholar
  11. Goursat, E.: 1964, A Course in Mathematical Analysis, Dover, New York, Vol.1.Google Scholar
  12. Greenberger, D. M., Horne, M. A., and Zeilinger, A.: 1990, Am. J. Phys. 58, 1131.MathSciNetCrossRefGoogle Scholar
  13. Hardy, L.: 1993, Phys. Rev. Lett. 71, 1665.MathSciNetMATHCrossRefGoogle Scholar
  14. Heywood, P. and Redhead, M. L.: 1983, Found of Phys. 13, 481.MathSciNetCrossRefGoogle Scholar
  15. Jordan, T. F.: 1994, Phys. Rev. A 50, 62.CrossRefGoogle Scholar
  16. Mermin, N. D.: 1990, Phys. Rev. Lett. 65, 1838.MathSciNetMATHCrossRefGoogle Scholar
  17. Ou, Z. Y. and Mandel, L.: 1988, Phys. Rev. Lett. 61, 50.MathSciNetCrossRefGoogle Scholar
  18. Peres, A.: 1995, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht, Ch.1.Google Scholar
  19. Redhead, M.: 1990, Incompleteness, Non-locality and Realism, Clarendon, Oxford, Ch.3.Google Scholar
  20. Shih, Y. H. and Alley, C: 1988, Phys.Rev. Lett. 61, 2921.CrossRefGoogle Scholar
  21. Torgerson, J. R., Branning, D., Monchen, C. H., and Mandel, L.: 1995, Phys. Lett. A 204, 323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • G. Di Giuseppe
    • 1
  • F. De Martini
    • 1
  • D. Boschi
    • 1
  1. 1.Dipartimento di FisicaUniversita La SapienzaRomaItaly

Personalised recommendations