Skip to main content

Host genetic control of symbiosis in soybean (Glycine max L.)

  • Chapter
Current Issues in Symbiotic Nitrogen Fixation

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 72))

Abstract

Genes controlling nitrogen-fixing symbioses of legumes with specialized bacteria known as rhizobia are presumably the products of many millions of years of evolution. Different adaptative solutions evolved in response to the challenge of survival in highly divergent complexes of symbionts. Whereas efficiency of nitrogen fixation appears to be controlled by quantitative inheritance, genes controlling nodulation are qualitatively inherited. Genes controlling nodulation include those for non-nodulation, those that restrict certain microsymbionts, and those conditioning hypernodulation, or supernodulation. Some genes are naturally occurring polymorphisms, while others were induced or were the result of spontaneous mutations. The geographic patterns of particular alleles indicate the role of coevolution in determining symbiont specificities and compatibilities. For example, the Rj4 allele occurs with higher frequency (over 50%) among the soybean (G. max) from Southeast Asia. DNA homology studies of strains of Bradyrhizobium that nodulate soybean indicated two groups so distinct as to warrant classification as two species. Strains producing rhizobitoxine-induced chlorosis occur only in Group II, now classified as B. elkanii. Unlike B. japonicum, B. elkanii strains are characterized by (1) the ability to nodulate the rjl genotype, (2) the formation of nodule-like structures on peanut, (3) a relatively high degree of ex planta nitrogenase activity, (4) distinct extracellular polysaccharide composition, (5) distinct fatty acid composition, (6) distinct antibiotic resistance profiles, and (7) low DNA homology with B. japonicum. Analysis with soybean lines near isogenic for the Rj4 versus rj4 alleles indicated that the Rj4 allele excludes a high proportion of B. elkanii strains and certain strains of B. japonicum such as strain USDA62 and three serogroup 123 strains. These groups, relatively inefficient in nitrogen fixation with soybean, tend to predominate in soybean nodules from many US soils. The Rj4 allele, the most common allelic form in the wild species, has a positive value for the host plants in protecting them from nodulation by rhizobia poorly adapted for symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akao S and Kouchi H 1992 A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci. Plant Nutr. 38, 183–187.

    Article  Google Scholar 

  • An J, Carlson R W, Glushka J and Streeter J G 1995 The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules. Carbohydr. Res. 269, 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Buzzell R I, Buttery B R and Ablett G R 1990 Supemodulation mutants in Elgin 87 soybean. In Nitrogen Fixation: achievements and objectives. Eds. P M Gresshoff, L E Roth, G Stacey and W E Newton, p. 726. Chapman and Hall, New York, USA.

    Google Scholar 

  • Caetano-Anolles G and Gresshoff P M 1990 Early induction of feedback regulatory responses governing nodulation in soybean. Plant Sci. 71, 69–81.

    Article  Google Scholar 

  • Caetano-Anolles G and Gresshoff P M 1991 Efficiency of nodule initiation and autoregulatory responses in a supernodulating soybean mutant. Appl. Environ. Microbiol. 57, 2205–2210.

    PubMed  CAS  Google Scholar 

  • Caldwell B E 1966 Inheritance of a strain specific ineffective nodulation in soybeans. Crop Sci. 6, 427–28.

    Article  Google Scholar 

  • Carlson R W, Sanjuan J, Bhat U R, Glushka J, Spaink H P, Wijfjes A H M, van Brüssel A A N, Stokkermans T J W, Peters N K and Stacey G 1993 The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. J. Biol. Chem. 268, 18372–18381.

    PubMed  CAS  Google Scholar 

  • Carroll B J, McNeil D L and Gresshoff P M 1985 A supernodu-lation and nitrate-tolerant symbiotic (jits) soybean mutant. Plant Physiol. 78, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Cho M J and Harper J E 1991 Root isoflavanoid response to grafting between wild-type and nodulation-mutant soybean plants. Plant Physiol. 96, 1277–1282.

    Article  PubMed  CAS  Google Scholar 

  • Cregan P B and Keyser H H 1986 Host restriction of nodulation by Rhizobium japonicum strain USDA123. Crop Sci. 26, 911–916.

    Article  Google Scholar 

  • Delves A C, Carroll B J and Gresshoff P M 1988 Genetic analysis and complementation studies on a number of mutant supernodulatin soybean lines. J. Genet. 67, 1–8.

    Article  Google Scholar 

  • Delves A C, Higgins A and Greshoff P M 1992 Shoot apex removal does not alter autoregulation of nodulation in soybean. Plant Cell Environ. 15, 249–254.

    Article  Google Scholar 

  • Delves A C, Mathews A, Day D A, Carer A S, Carroll B T and Greshoff P M 1986 Regulation of soybean-Rhizobium symbiosis by shoot and root factors. Plant Physiol. 82, 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Devine T E 1984 Genetics and breeding of nitrogen fixation. In Biological Nitrogen Fixation. Ed. M Alexander, pp 127–154. Plenum Press, New York, USA.

    Chapter  Google Scholar 

  • Devine T E 1985 Nadulation of soybean (Glycine max L. Merr.) plant introduction lines with the fast-growing rhizobial strain USDA205. Crop Sci. 25, 354–356.

    Google Scholar 

  • Devine T E 1987 A comparison of rhizobial strain compatibilities of Glycine max and its progenitor species Glycine soja. Crop Sei. 27, 635–639.

    Article  Google Scholar 

  • Devine T E 1989 The role of co-evolution in the soy-bean/microsymbiont interaction In World Soybean Research Conference IV Proceedings. Ed. A J Pascale, pp 1119–1124. Orientacion Grafica Editora S R L, Buenos Aires, Argentina.

    Google Scholar 

  • Devine T E and Breithaupt B H 1981 Frequencies of nodulation response alleles, Rj2 and Rj4, in soybean plant introductions and breeding lines. USDA Tech. Bull., No. 1628.

    Google Scholar 

  • Devine T E, Kilen T C and O’Neill J J 1991 Genetic linkage of the phytophthora resistance gene Rps2 and the nodulation response gene Rj2 in soybean. Crop Sci. 713–715.

    Google Scholar 

  • Devine T E and Kuykendall L D 1994 Rfgl, a soybean gene controlling nodulation with fast growing Rhizobium fredii strain 205. Plant and Soil 158, 47–51.

    Article  CAS  Google Scholar 

  • Devine T E, Kuykendall L D and Breithaupt B H 1983 Nodule-like structures induced on peanut by chloriosis producing strains of Rhizobium classified as R. japonicum. Crop Sci. 23, 394–397.

    Google Scholar 

  • Devine T E, Kuykendall L D and O’pNeill J J 1988 DNA homol-ogy group and the identity of bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean. Crop Sci. 28, 939–941

    Article  Google Scholar 

  • Devine T E, Kuykendall L D and O’pNeill J J 1990 The Rj4 allele in soybean represses nodulation by chlorosis-inducing bradyrhizo-bia classified as DNA homology group II by antibiotic resistance profiles. Theor. Appl. Genet. 80, 33–37.

    Article  CAS  Google Scholar 

  • Devine T E, Kuykendall L D and O’Neill J J 1991 Nodulation interaction of the soybean allele Rj2 with asiatic isolates of Bradyrhizobium japonicum. Crop Sci. 31, 1129–1131.

    Article  Google Scholar 

  • Devine T E and O’pNeill J J 1986 Registration of BARC-2 (Rj4) and BARC-3 (rj4) soybean germplasm. Crop Sci. 26, 1263–1264.

    Article  Google Scholar 

  • Devine T E and O’pNeill J J 1987 Registration of BARC-4 (Rj2) and BARC-5 (rj2) soybean germplasm. Crop Sci. 27, 1322–1323.

    Article  Google Scholar 

  • Devine T E, O’pNeill J J and Kuykendall L D 1993 Near isogenic lines of soybeans as tools to identify nodulation specific mutants of Bradyrhizobium elkanii. Plant and Soil 149, 205–209.

    Article  Google Scholar 

  • Devine T E, Palmer R G and Buzzell R I 1983 Analysis of genetic linkage in the soybean. J. Heredity 74, 457–460.

    Google Scholar 

  • Devine T E and Weber D F 1977 Genetic specificity of nodulation. Euphytica 26, 527–535.

    Article  Google Scholar 

  • Dobert R C, Breil B T and Triplett E W 1994 DNA sequence of the common nodulation genes of Brady rhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol. Plant-Microbe Inter. 7, 564–572.

    Article  CAS  Google Scholar 

  • Dockendorff T C, Sanjuan J, Grob P and Stacey G 1994 NolA represses nod gene expression in Bradyrhizobium japonicum. Mol Plant-Microbe Inter. 7, 596–602.

    Article  CAS  Google Scholar 

  • Dowdle S F and Bohlool B B 1985 Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China. Appl. Environ. Microbiol. 50, 1171–1176.

    PubMed  CAS  Google Scholar 

  • Erdman L W, Johnson H W and Clark F 1957 Varietal responses of soybeans to a bacterial-induced chlorosis. Agron. J. 49, 267–271.

    Article  Google Scholar 

  • Fuhrmann J J 1990 Symbiotic effectiveness of indigenous soybean bradyrhizobia as related to serological, morphological, rhizo-bitoxin and hydrogenase phenotype. Appl. Environ. Microbiol. 56, 224–229.

    PubMed  CAS  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S and Minamisawa K 1994 The involvement of indole-3-acetic acid produced by Bradyhizobium elkanii in nodule formation. Plant Cell Physiol. 35, 1261–1265.

    CAS  Google Scholar 

  • Gremaud M F and Harper J E 1989 Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol. 89, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Gresshoff P M 1993 Molecular genetic analysis of nodulation genes in soybean. In Plant Breeding Reviews. Ed. J Janick. Vol. 11. pp 275–308. John Wiley and Sons Publishers, New York, NY, USA.

    Google Scholar 

  • Gresshoff P M 1993 Plant function in nodulation and nitrogen fixation in legumes. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton, pp 31–54. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hadley H H and Hymowitz T 1973 Speciation and cytogenetics. In Soybeans: Improvement, Production, and Uses. Ed. B E Cald-well. Agronomy 16, 97–116.

    Google Scholar 

  • Harper J E and Nickell C D 1995 Genetic analysis of nonnodulat-ing soybean mutants in a hypernodulated background. Soybean Genet. Newsl. 22, 185–190.

    Google Scholar 

  • Hedges B R, Sellner J M, Devine T E and Palmer R G 1990 Assigning isocitrate dehydrogenase to linkage group 11 in soybean. Crop Sci. 30, 940–942.

    Article  CAS  Google Scholar 

  • Hollis A B, Kloos W E and Elkan G H 1981 DNA:DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. J. Genet. Microbiol. 123, 215–222.

    Google Scholar 

  • Hubbell D H and Elkan G H 1967 Correlation of physiological characteristics with nodulating abilty in Rhizobium japonicum. Can. J. Microbiol. 13, 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Huber T A, Agarwal A K and Keister D L 1984 Extracellular polysac-charide composition, ex planta nitrogenase activity, and DNA homology in Rhizobium japonicum. J. Bacteriol. 158, 1168–1171.

    PubMed  CAS  Google Scholar 

  • Hunter W J and Kuykendall L D 1990 Enhanced nodulation and nitrogen fixation by a revenant of a nodulation-defective Bradyrhizobium japonicum tryptophan auxotroph. Appl. Environ. Microbiol. 56, 2399–2403.

    PubMed  CAS  Google Scholar 

  • Hunter W J and Kuykendall L D 1995 Symbiotic properties of 5-methyltryptophan-resistant mutants of Bradyrhizobium japonicum. Plant and Soil 173, 293–298.

    Article  CAS  Google Scholar 

  • Jordan D C 1982 Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov.,agenus of slow-growing, root nodule bacteria from leguminous plants. Int. J. System. Bacteriol. 32, 136–139.

    Article  Google Scholar 

  • Keister D L and Marsh S S 1990 Hemoproteins of Bradyrhizobium japonicum cultured cells and bacteroids. Appl. Environ. Microbiol. 56, 2736–2741.

    PubMed  CAS  Google Scholar 

  • Keyser H H and Cregan P B 1987 Nodulation and competition for nodulation of selected soybean genotypes among Bradyrhizobium japonicum serogroup 123 isolates. Appl. Environ. Microbiol. 53, 2631–2635.

    PubMed  CAS  Google Scholar 

  • Keyser H H, Weber D F and Uratsu S L 1984 Rhizobium: japonicum serogroup and hydrogenase phenotype distribution in 12 states. Appl. Environ. Microbiol. 47, 613–615.

    PubMed  CAS  Google Scholar 

  • Kokubun M and Akao S 1994 Inheritance of supernodulation in soybean mutant En6500. Soil Sci. Plant Nutr. 40, 715–718.

    Article  Google Scholar 

  • Krishnan H B and Pueppke S G 1992 Inactivation of nolC conditions developmental abnormalities in nodulation of Peking soybean by Rhizobium fredii USDA257. Mol Plant-Microbe Inter. 5 14–21.

    Article  CAS  Google Scholar 

  • Krishnan H B and Pueppke S G 1994 Cultivar-specific genes of the nitrogen-fixing soybean symbiont,Rhizobium fredii USA257, also regulate nodulation of Erythrina spp. Am. J. Bot. 8, 38–45.

    Article  Google Scholar 

  • Kummer R M and Kuykendall L D 1989 Symbiotic properties of amino acid auxotrophs of Bradyrhizobium japonicum. Soil Biol. Biochem. 21, 779–782.

    Article  CAS  Google Scholar 

  • Kuykendall L D 1989 Influence of Glycine max nodulation on the persistence in soil of a genetically marked strain of Bradyrhizo-bium japonicum. Plant and Soil 116, 275–277.

    Article  Google Scholar 

  • Kuykendall L D, Devine T E and Cregan P B 1982 Positive role of nodulation on the establishment of Rhizobium japonicum in subsequent crops of soybean. Current Microbiol. 7, 79–81.

    Article  Google Scholar 

  • Kuykendall L D, Hahn M, Hennecke H and Hunter W J 1992 Genetically improved rhizobia and their use in agriculture. In Biological Nitrogen Fixation and Sustainability of Tropical Agriculture. Eds. K Mulongoy, M Gueye and D S C Spencer, pp 211–210. John Wiley and Sons, London, UK.

    Google Scholar 

  • Kuykendall L D and Hunter W J 1991 Enhancement of nitrogen fixation with Bradyrhizobium japonicum mutants. US Patent 5,021,076.

    Google Scholar 

  • Kuykendall L D and Hunter W J 1995 Symbiotic ineffectiveness of trpCD deletion mutants of Brady rhizobium japonicum. Soil Biol. Biochem. 27, 1035–1039.

    Article  CAS  Google Scholar 

  • Kuykendall L D, Roy M A, O’pNeill J J and Devine T E 1988 Fatty acids, multiple antibiotic resistance, and DNA homology among Bradyrhizobium japanicum strains. Int. J. Syst. Bacteriol. 37, 358–361.

    Article  Google Scholar 

  • Kuykendall L D, Saxena B, Devine T E and Udell S E 1992 Genetic diversity in Rhizobium japonicum and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38, 501–505.

    Article  CAS  Google Scholar 

  • Lohrke S M, Orf J H, Martinez-Romero E and Sadowsky M J 1995 Host-controlled restriction of nodulation of Bradyrhizobium japonicum strains in Serogroup 110. Appl. Environ. Microbiol. 61, 2378–2383.

    PubMed  CAS  Google Scholar 

  • Mathews A, Carroll B J and Gresshoff P M 1989 A new nonnodula-tion gene in soybean. J. Heredity 80, 357–360.

    Google Scholar 

  • Mathews A, Carroll B J and Gresshoff P M 1990 The genetic interaction between non-nodulation and supernodulation in soybean: an example of developmental epistasis. Theor. Appl. Genet. 79, 125–130.

    Article  Google Scholar 

  • Meinhardt L W, Krishnan H B, Balatti P A and Pueppke S G 1993 Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USA257. Mol. Microbiol. 9, 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Minamisawa K 1989 Extracellular polysaccharide composition, rhi-zobitoxine production, and hydrogenase phenotype in Bradyrhizobium japonicum. Plant Cell Physiol. 30, 877–884.

    CAS  Google Scholar 

  • Minamisawa K and Fukai K 1991 Production of indole-3-acetic acid by Bradyrhizobium japonicum. A correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol. 32, 1–9.

    CAS  Google Scholar 

  • Murphy S G and Elkan G H 1965 Nitrogen metabolism of some strains of Rhizobium japonicum having different nodulating capacities. Can. J. Microbiol. 11, 1039–1041.

    Article  PubMed  CAS  Google Scholar 

  • Nangju D 1980 Soybean response to indigenous rhizobia as influenced by cultivar origin. Agron. J. 72, 403–406.

    Article  Google Scholar 

  • Palmer R G and Kilen T C 1987 Qualitative genetics and cytoge-netics. In Soybeans: Improvement, Production and Uses. Ed. J R Wilcox. Agronomy 16, 135–209.

    Google Scholar 

  • Polhill R M, Raven P H and Stirton C H 1981 Evolution and System-atics of the Leguminosae. In Advances in Legume Systematics. Part I. Eds. R M Polhill and R H Raven, pp 1–26. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • Pracht J E, Nickell C D and Harper J E 1993 Genes controlling nodulation in soybean: Rj5 and Rj6. Crop Sci. 33, 711–713.

    Article  Google Scholar 

  • Pracht J E, Nickell C D, Harper J E and Bullock D G 1994 Agronomic evaluation of non-nodulating and hypernodulating mutants of soybean. Crop Sci. 34, 738–740.

    Article  Google Scholar 

  • Pueppke S G and Payne J H 1987 Responses of Rjl and rjl soybean isolines to inoculation with Bradyrhizobium japonicum. Plant Physiol. 84, 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky M J and Cregan P B 1992 The soybean Rj4 allele restricts nodulation by Bradyrhizobium japonicum serogroup 123 strains. Appl. Environ. Microbiol. 58, 720–723.

    PubMed  CAS  Google Scholar 

  • Scholia M H and Elkan G H 1984 Rhizobium fredii sp. nov., a fast growing bacterium that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34, 484–486.

    Article  Google Scholar 

  • Shoemaker R, Polzin K, Lorenzen L and Specht J 1995 Molecular genetic mapping of soybean: Map utilization. Crop Sci. 32, 1091–1098

    Article  Google Scholar 

  • Song L, Carroll B J, Gresshoff P M and Herridge D F 1995 Field assessment of supernodulating genotypes of soybean for yield. N2 fixation and benefit to subsequent crops. Soil Biol. Biochem. 27, 563–569.

    CAS  Google Scholar 

  • Sprent J I 1994 Evolution and diversity in the legume-Rhizobium symbiosis: chaos theory? Plant and Soil 161, 1–10.

    Article  Google Scholar 

  • Stacey G, Sanjuan S, Luka S, Dockendorff T and Carlson R W 1995 Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol. Biochem. 27, 473–483.

    Article  CAS  Google Scholar 

  • Streeter J G 1994 Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can. J. Microbiol. 40, 513–522.

    Article  Google Scholar 

  • Streeter J G and Salminen S O 1993 Distribution of the two types of polysaccharide formed by Bradyrhizobium japonicum bac-teroids in nodules on field-grown soybean plants (Glycine max (L,.) Merr.) Soil Biol. Biochem. 25, 1027–1032.

    CAS  Google Scholar 

  • Streeter J G, Salminen S O, Whitmoyer R E and Carlson R W 1992 Formation of novel polysaccharides by Bradyrhizobium japonicum bacteroids in soybean nodules. Appl. Environ. Microbiol. 58, 607–613.

    PubMed  CAS  Google Scholar 

  • Trese A T 1995 A single dominant gene in McCall soybean prevents effective nodulation with Rhizobium fredii USDA257. Euphytica 81, 279–282.

    Article  Google Scholar 

  • Van Berkum P and Keyser H H 1985 Anaerobic growth and denitri-fication among different serogroups of soybean rhizobia. Appl. Environ. Microbiol. 49, 772–777.

    PubMed  Google Scholar 

  • Vest G and Caldwell B E 1972 Rj4 a gene conditioning ineffective nodulation in soybeans. Crop Sci. 12, 692–694.

    Article  Google Scholar 

  • Vest G, Weber D F and Sloger C 1973 Nodulation and nitrogen fixation. In Soybeans: Improvement, Production, and Uses. Ed. B E Caldwell. Agronomy 16, 363–390.

    Google Scholar 

  • Vuong T D, Nickell C D and Harper J E 1996 Genetic and allelism analyses of hypernodulating soybean (Glycine max (L.) Merr.) mutants from two genetic backgrounds. Crop Sci. (In press).

    Google Scholar 

  • Weber D F, Keyser H H and Uratsu S L 1989 Serological distribution of Bradyrhiz.obiumjaponicum from US soybean production areas. Agron. J. 81, 786–789.

    Article  Google Scholar 

  • Wells S E and Kuykendall L D 1983 Tryptophan auxotrophs of Rhizobiumjaponicum. J. Bacteriol. 156, 1356–1358.

    PubMed  CAS  Google Scholar 

  • Williams L F and Lynch D L 1954 Inheritance of a nonnodulating character in the soybean. Agron. J. 46, 28–29.

    Article  Google Scholar 

  • Wilson A C, Ochman H and Prager E M 1987 Molecular time scale for evolution. Trends Genet. 3, 241–247.

    Article  CAS  Google Scholar 

  • Young J P W, Downer H L and Eardly B D 1991 Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173, 2271–2277.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. H. Elkan R. G. Upchurch

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Devine, T.E., Kuykendall, L.D. (1996). Host genetic control of symbiosis in soybean (Glycine max L.). In: Elkan, G.H., Upchurch, R.G. (eds) Current Issues in Symbiotic Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5700-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5700-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6404-0

  • Online ISBN: 978-94-011-5700-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics