Skip to main content

Metal-gene-interactions in roots: metallothionein-like genes and iron reductases

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 73))

Abstract

Many metals are known to be essential for plants while others are not. Large amounts of essential or non-essential metals can be toxic. The availability of metals in soil can vary, both temporally and spatially. How do roots acquire, store and distribute each required metal while avoiding either toxicity or deficiency? What genes determine these responses?

This account considers iron, copper and zinc. Progress in the isolation, functional analysis and metallo-regulation of genes encoding metallothionein-like proteins and root surface metal reductases is described. This article is not a broad review but presents some of our recent findings in the context of related research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson G J, Lesuisse E, Dancis A, Roman D G, Labbe P and Klausner R D 1992 Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. J. Inorg. Biochem. 47, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Bohlmann H and Reinmannphilipp U 1990 Leaf thionins, a novel class of putative defense factors. Physiol. Plant. 80, 315–321.

    Article  CAS  Google Scholar 

  • Askwith C, Eide D, Van Ho A, Bernhard P S, Li L, Davis-Kaplan S, Sipe D M and Kaplan J 1994 The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferous iron uptake. Cell 76, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Bagg A and Neilands J B 1987 Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51, 509–518.

    PubMed  CAS  Google Scholar 

  • Bernhard W R and Kagi J H R 1987 Purification and characterization of atypical cadmium-binding polypeptide from Zea mays. In Metallothionein II. Proceedings of the Second International meeting on Metallothionein and other low molecular weight metal-binding proteins, Zurich, 1985. Eds. J H R Kägi and Kojima. pp 309–315. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Brown N L, Rouch D A and Lee B T O 1992 Copper-resistance mechanisms in bacteria. Plasmid 27, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V 1994 Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus — identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 105, 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Buckhout T J, Bell P F, Luster D G and Chaney R L 1989 Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiol. 90, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, van de Wetering D A, Marschner H and Bienfait H F 1987 Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiol. 85, 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok S F, Bleecker A B and Meyerowitz E M 1993 Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262, 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Chang C 1996 The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem. Sci. 21, 129–133.

    PubMed  CAS  Google Scholar 

  • Chen Y, Saari J T and Kang Y J 1995 Copper deficiency increases metallothionein-I mRNA content selectively in rat liver. Nutr. Biochem. 6, 572–576.

    Article  CAS  Google Scholar 

  • Culotta V C, Howard W R and Liu X F 1994 CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J. Biol. Chem. 269, 25295–25302.

    PubMed  CAS  Google Scholar 

  • Dameron C T, Winge D R, George G N, Sansones M, Hu S and Hamer D 1991 A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc. Natl. Acad. Sci. USA 88, 6127–6131.

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Roman D G, Anderson G J, Hinnebusch A G and Klausner R D 1992 Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89, 3869–3873.

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Yuan D S, Haile D, Askwith C, Eide D, Moehle C, Kaplan J and Klausner R D 1994 Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • De Framond A J 1991 A metallothionein-like gene from maize (Zea mays). FEBS Lett. 290, 103–106.

    Article  PubMed  Google Scholar 

  • De Miranda J R, Thomas M A, Thurman D A and Tomsett A B 1990 Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett. 260, 277–280.

    Article  PubMed  Google Scholar 

  • De Silva D M, Askwith C C, Eide D and Kaplan J 1995 The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270, 1098–1101.

    Article  PubMed  Google Scholar 

  • Ecker J R 1995 The ethylene signal-transduction pathway in plants. Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Evans I M, Gatehouse L N, Gatehouse J A, Robinson N J and Croy R R D 1990 A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett. 262, 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Evans K M, Gatehouse J.A, Lindsay W P, Shi J, Tommey A M and Robinson N J 1992 Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMT A function. Plant Mol. Biol. 20, 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Foley R C and Singh K B 1994 Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol. Biol. 26, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Fortham-Skelton A P et al. Plant Molec. Biol., in press.

    Google Scholar 

  • Georgatsu E and Alexandraki D 1994 Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3065–3073.

    Google Scholar 

  • Grill E, Winnacker E L and Zenk M H 1985 Phytochelatins: The principle heavy-metal complexing peptides of higher plants. Science 230, 674–676.

    Article  PubMed  CAS  Google Scholar 

  • Groom Q J, Torres M A, Fordham-Skelton A P, Hammond-Kosack K E, Robinson N J and Jones J D G 1996 rbohA, a rice homologue of the mammalian SP91phox respiratory burst oxidase gene. Plant J. 10, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Grusak M A, Welch R M and Kochian L V 1990 Physiological characterisation of a single-gene mutant of Pisum sativum exhibiting excess iron accumulation. Plant Physiol. 93, 976–981.

    Article  PubMed  CAS  Google Scholar 

  • Hamer D H 1986 Metallothionein. Annu. Rev. Biochem. 55, 913–951.

    Article  PubMed  CAS  Google Scholar 

  • Hassett R and Kosman D J 1995 Evidence for Cu (II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Kells D I C and Lane B G 1984 Partial amino acid sequence of the wheat germ Ec protein. Comparison with another protein very rich in half-cystine and glycine: wheat germ agglutinin. Can. J. Biochem. Cell Biol. 62, 908–913.

    Article  CAS  Google Scholar 

  • Huckle J W, Morby A P, Turner J S and Robinson N J 1993 Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol. Microbiol. 7, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Maxson J M and Woodson W R 1994 An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione S-transferase (GST1) gene. Proc. Natl. Acad. Sci. USA 91, 8925–8929.

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J, Reins H-A, Lee J, Romeo A, Hassett R, Kosman D and Jentsch S 1993 MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12, 5051–5056.

    PubMed  CAS  Google Scholar 

  • Kakimoto T 1996 CKH, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985.

    Article  PubMed  CAS  Google Scholar 

  • Kanamura K, Kashiwagi S and Mizuno T 1994 A copper-transporting P-type ATPse found in the thylakoid membrane of the Synechococcus species PCC 7942. Mol. Microbiol. 13, 369–377.

    Article  Google Scholar 

  • Kawashima I, Inokuchi Y, Chino M, Kimura M, and Shimizu N 1991 Isolation of a gene for a metallothionein-like protein from soybean. Plant Cell Physiol. 32, 913–916.

    CAS  Google Scholar 

  • Kawashima I, Kennedy T D, Chino M and Lane B G 1992 Wheat Ec metallothionein genes. Eur. J. Biochem. 209, 971–976.

    Article  PubMed  CAS  Google Scholar 

  • Kieber J J, Rothenberg M, Roman G, Feldmann K A and Ecker J R 1993 CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72, 427–441.

    Article  PubMed  CAS  Google Scholar 

  • Kille P, Winge D R, Harwood J L and Kay J 1991 A plant metallothionein produced in E. coli. FEBS Lett. 295, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Klemsdal S S, Hughes W, Lönneborg A, Aalen R B and Olsen O A 1991 Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Mol. Gen. Genet. 228, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Lamb C J 1994 Plant disease resistance genes in signal perception and transduction. Cell 76, 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Lane B, Kajioka R and Kennedy T 1987 The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 65, 1001–1005.

    Article  CAS  Google Scholar 

  • Ledger S E and Gardner R C 1994 Cloning and expression of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol. Biol. 25, 877–886.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse E, Crichton R R and Labbe P 1990 Iron reductases in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Acta 1038, 253–259

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R and Lamb C 1994 H2O2 from the oxidative burst orchestrates the plant hypersensive disease resistance response. Cell 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Mehdy M C 1994 Active oxygen species in plant defense against pathogens. Plant Physiol. 105, 467–472.

    PubMed  CAS  Google Scholar 

  • Moisyadi S and Stiles J I 1995 A cDNA encoding a metallothionein I-like protein from coffee leaves (Coffea arabica). Plant Physiol. 107, 295–296.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Goldman S, Deikman J, Margossian L and Fischer R L 1993 Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Nat. Acad. Sxi. USA 90, 5939–5943.

    Article  CAS  Google Scholar 

  • Morby A.P, Turner J S, Huckle J W and Robinson N J 1993 SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res. 21, 921–925.

    Article  PubMed  CAS  Google Scholar 

  • Nielson K B and Winge D R 1983 Order of metal binding in metallothionein. J. Biol. Chem. 58, 13063–13069.

    Google Scholar 

  • Nielson K B and Winge D R 1984 Preferential binding of copper to the β domain of metallothionein. J. Biol. Chem. 259, 4941–4946.

    PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa N-K, Umehara Y and Mori S 1991 An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol. Biol. 17, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa N-K, Umehara Y, Ohata T and Mori S 1992 Iron deficiency specific cDNA (Ids1) with two homologous cysteine rich MT domains from the roots of barley. J. Plant Nutr. 15, 2157–2172.

    Article  CAS  Google Scholar 

  • Olafson R W, McCubbin W D and Kay C M 1988 Primary and-secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem. J. 251, 691–699.

    PubMed  CAS  Google Scholar 

  • Parkinson J S and Kofoid E C 1992 Communication modules in bacterial signalling proteins. Annu. Rev. Genet. 26, 71–112.

    Article  PubMed  CAS  Google Scholar 

  • Phung L T, Ajlani G and Haselkorn R 1994 P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc. Nat. Acad. Sci. USA 91, 9651–9654.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W E and Curvetto N R 1980 Metallothionein occurs in roots of Agrostis tolerant to excess copper: Nature 287, 563–564.

    Article  CAS  Google Scholar 

  • Robinson N J, Barton K, Naranjo C M, Sillerund J O, Trewhella J, Watt K and Jackson P J 1987 Characterization of metal binding peptides from cadmium resistant plant cells. In Metallothionein II. Proceedings of the Second International meeting on Metallothionein and other low molecular weight metal-binding proteins, Zurich 1985. Eds. J H R Kägi and Kojima. pp 323–327. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Robinson N J, Evans I M, Mulcrone J, Bryden J and Tommey A M 1992 Genes with similarity to metallothionein genes and copper, zinc ligands in Pisum sativum L. Plant Soil 146, 291–298.

    Article  CAS  Google Scholar 

  • Robinson N J, Tommey A M, Kuske C and Jackson P J 1993 Plant metallothioneins. Biochem. J. 295, 1–10.

    PubMed  CAS  Google Scholar 

  • Robinson N J, Wilson J R and Turner J S 1996 Expression of the type 2 metallothiinein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Mol. Biol. 30, 1169–1179.

    Article  PubMed  CAS  Google Scholar 

  • Romera F J and Alcantara E 1994 Iron-deficiency stress response in cucumber (Cucumis sativus L.) roots. A possible role for ethylene? Plant Physiol. 105, 1133–1138.

    PubMed  CAS  Google Scholar 

  • Romera F J, Welch R M, Norvell W A and Schaefer S C 1996a Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of strategy I species. BioMetals 9, 45–50.

    CAS  Google Scholar 

  • Romera F J, Welch R M, Norvell W A, Schaefer S C and Kochian L V 1996b Ethylene involvement in the over-expression of Fe(III)-chelate reductase by roots of El07 pea [Pisum sativum L. (brz, brz)] and chloronerva tomato (Lycopersicon esculentum L.) mutant genotypes. BioMetals 9, 38–44.

    CAS  Google Scholar 

  • Rost B and Sander C 1993 Prediction of protein structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599.

    Article  PubMed  CAS  Google Scholar 

  • Rost B and Sander C 1994 Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72.

    Article  PubMed  CAS  Google Scholar 

  • Shewry P R and Tatham A S 1990 The prolamin storage proteins of cereal seeds — structure and evolution. Biochem. J. 267, 1–12.

    PubMed  CAS  Google Scholar 

  • Shi J, Lindsay W P, Huckle J W, Morby A P and Robinson N J 1992 Cyanobacterial metallothionein gene expressed in Escherichia coli. FEBS Lett. 303, 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Nucifora G and Phung L T 1993 Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol. Microbiol. 10, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Snowden K C and Gardner R C 1993 Five genes induced by aluminium in wheat (Triticum aestivum L.) roots. Plant Physiol. 103, 855–861.

    Article  CAS  Google Scholar 

  • Thiele D J 1992 Metal-regulated transcription in eukaryotes. Nucleic Acids Res. 20, 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  • Tommey A M, Shi J, Lindsay W P, Urwin P E and Robinson N J 1991 Expression of the pea gene PsMTa in E. coli. FEBS Lett. 292, 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Turner J S, Morby A P, Whitton B A, Gupta A and Robinson N J 1993 Construction of Zn2+/Cd2+ hypersensitive cyanobacteri al mutants lacking a functional metallothionein locus. J. Biol. Chem. 68, 4494–4498.

    Google Scholar 

  • Turner J S, Glands P D, Samson A C R and Robinson N J 1996 Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res. 24, 3714–3721.

    Article  PubMed  CAS  Google Scholar 

  • Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E and Ryals J 1993 Regulation of pathogenesis-related protein-la gene expression in tobacco. Plant Cell 5, 159–169.

    PubMed  CAS  Google Scholar 

  • Weig A and Komor E 1995 Isolation of a class II metallothionein cDNA (accession no. L02306) from Ricinus communis L. Plant Physiol. PGR95-066.

    Google Scholar 

  • Welch R M and LaRue T A 1990 Physiological characteristics of Fe accumulation in the ‘bronze’ mutant of Pisum sativum L. cv’ sparkle’ E107 (brz, brz). Plant Physiol. 93, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Welch R M, Norvell W A, Schaefer S C, Shaff J E and Kochian L V 1993 Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190, 555–561.

    Article  CAS  Google Scholar 

  • Yamagchi-Iwai Y, Dancis A and Klausner R 1995 AFT1 a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 14, 1231–1239.

    Google Scholar 

  • Yi Y and Guerinot D 1996 Genetic evidence that induction of root Fe (III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10, 835–844.

    Article  PubMed  CAS  Google Scholar 

  • Yuan D S, Stearman R, Dancis A, Dunn T, Beller T and Klausner R D 1995 The Menkes-Wilson-disease gene homolog in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA 92, 2632–2636.

    Article  PubMed  CAS  Google Scholar 

  • Zarembinski T I and Theologis A 1994 Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579–1597.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J and Goldsbrough P B 1994 Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6, 875–884.

    PubMed  CAS  Google Scholar 

  • Zhou J and Goldsbrough P B 1995 Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. M. Anderson P. W. Barlow D. T. Clarkson M. B. Jackson P. R. Shewry

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robinson, N.J., Wilson, J.R., Turner, J.S., Fordham-Skelton, A.P., Groom, Q.J. (1997). Metal-gene-interactions in roots: metallothionein-like genes and iron reductases. In: Anderson, H.M., Barlow, P.W., Clarkson, D.T., Jackson, M.B., Shewry, P.R. (eds) Plant Roots - From Cells to Systems. Developments in Plant and Soil Sciences, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5696-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5696-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6402-6

  • Online ISBN: 978-94-011-5696-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics