Skip to main content

Fabrication of High-Temperature Squid Magnetometers

Correlations with Design and Performance

  • Chapter
SQUID Sensors: Fundamentals, Fabrication and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

Fabrication of SQUID magnetometers from epitaxial thin films of high-temperature superconductors and multilayered film structures including perovskite insulator films is reviewed in this chapter. Emphasized are patterning and processing methods, fabrication of Josephson junctions having resistively-shunted current-voltage characteristics, attained reproducibility and spreads of junction critical current and normal resistance. Subsequently, guidelines are given for designing and fabricating single and multilayered SQUID sensor structures, especially flux transformers and multiloop SQUIDs. Included are correlations with attained performance characteristics of magnetometers: their effective area, white and low-frequency flux noise, and the resulting magnetic field resolution at high and low signal frequencies. Additionally described are alternative planar rf SQUID tank-circuit resonators and the resulting properties of rf SQUIDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berberich, P., Utz, B., Prusseit, W. and Kinder, H. (1994) Homogeneous high quality YBCO-films on 33“and4” substrates, Physica C 219, 497–504.

    Article  ADS  Google Scholar 

  2. Phillips, J. (1993) Materials issues affecting the new superconducting electronics, in H. Weinstock and R.W. Ralston (eds), The New Superconducting Electronics, Kluwer Academic Publishers, Dordrecht, pp. 59–88.

    Chapter  Google Scholar 

  3. Somekh, R.E. and Barber, Z.H. (1992) The deposition of ceramic superconductors, in R. Kossowsky, B. Raveau, D. Wohlleben and S.K. Patapis (eds)Physics and Materials Science of High Temperature Superconductors, II, Kluwer Academic Publishers, Dordrecht, pp. 443–469.

    Chapter  Google Scholar 

  4. Chrissey, D.B. and Hubler, G.K., editors (1994) Pulsed Laser Deposition of Thin Films, John Wiley and Sons, New York.

    Google Scholar 

  5. Holzapfel, B., Roas, B., Schultz, L., Bauer, P. and Saemann-Ischenko, G. (1992) Off--axis deposition of YBCO thin films, App1. Phys. Lett. 61, 3178–3180.

    Article  Google Scholar 

  6. Braginski, A.I. (1993) Thin film structures, in H. Weinstock and R.W. Ralston (eds), The New Superconducting Electronics, Kluwer Academic Publishers, Dordrecht, pp. 89–122.

    Chapter  Google Scholar 

  7. Zaitsev, A.G., Kutzner, R. and Wördenweber, R. (1995) Growth of high-quality YBCO on CeO2 buffer of mixed (001)/(111) orientation on sapphire, Appl. Phys. Lett. 67, 2723–2725.

    Article  ADS  Google Scholar 

  8. O’Bryan, H.M., Gallagher, P.K., Berkstresser, G.W. and Brandle, C.D. (1990) Thermal analysis of rare earth gallates and aluminates, J. Mater. Res. 5, 183–189.

    Article  ADS  Google Scholar 

  9. Ockenfuss, G., Wördenweber, R., Scherer, T.A., Unger, R. and Jutzi, W. (1995) In-situ low pressure oxygen annealing of YBa2Cu3O7-δ single and multilayer systems, Physica C, 243, 24–28.

    Article  ADS  Google Scholar 

  10. Schneider, J., Kohlstedt, H. and Wördenweber, R. (1993) Nanobridges of optimized YBCO thin films for superconducting flux-flow type devices, Appl. Phys. Lett. 63, 2426–2428.

    Article  ADS  Google Scholar 

  11. van der Harg, A.J.M., van der Drift, E. and Hadley, P. (1995) Deep-submicron structures in YBCO: fabrication and measurement, IEEE Trans. Appl. Supercond. 5, 1448–1451.

    Article  Google Scholar 

  12. Eidelloth, W. and Sandstrom, R.L. (1991) Wet etching of gold films compatible with high Tc superconducting thin films, Appl. Phys. Lett. 59, 1632–1634.

    Article  ADS  Google Scholar 

  13. Vasquez, R.P., Hunt, B,D. and Foote, M.C. (1988) Non-aqueous chemical etch for YBCO (1988), Appl. Phys. Lett. 53, 2692–94.

    Article  ADS  Google Scholar 

  14. Faley, M.I., Poppe, U., Soltner, H., Jia, C.L., Siegel, K. (1993) Josephson junctions, interconnects, and crossovers on chemically etched edges of YBCO, Appl. Phys. Lett. 63, 2138–2140.

    Article  ADS  Google Scholar 

  15. Ma, Q.Y., Yang, E.S., Treyz, G.V. and Chang, C.-A. (1989) Novel method of patterning YBCO superconducting thin films, Appl. Phys. Lett. 55, 896–898.

    Article  ADS  Google Scholar 

  16. Copetti, C., Gassig, U., Zander, W. Schubert, J. and Buchal, Ch. (1992) Improved inhibit-patterning of YBCO thin films, Appl. Phys. Lett., 61, 3041–304.

    Article  ADS  Google Scholar 

  17. Likharev, K.K. (1986) Dynamics of Josephson Junctions and Circuits,Gordon and Breach, Pbl.., New York, p. 17.

    Google Scholar 

  18. Gross, R. (1994) Grain boundary Josephson junctions in the HTS, in S.L. Shinde and D. Rudman (eds.) Interfaces in High-T c Superconducting Systems, Springer Verlag, New York, pp. 176–209.

    Chapter  Google Scholar 

  19. Pettiette-Hall, C.L., Luine, J.A., Murduck, J.M., Burch, J.F., Hu, R., Sergant, M. and St. John, D. (1995) YBCO step-edge junctions on various substrates, IEEE Trans. Appl. Supercond. 5, 2087–2090;

    Article  Google Scholar 

  20. Also: Murduck, J.M., Pettiette-Hall, C.L. and Luine, J.M. (1994) Improved step-edge junction uniformity and circuit yield, Extended Abstracts of Int. Workshop on HTS Electron Devices in Whistler, BC, FED-136, Tokyo, pp. 126–127.

    Google Scholar 

  21. Dimos, D., Chaudhari, P., Mannhart, J. and LeGoues, F.K. (1988) Orientation dependence of grain-boundary critical currents in YBCO bicrystals, Phys. Rev. Lett. 61, 219–222.

    Article  ADS  Google Scholar 

  22. Dimos, D., Chaudhari, P. and Mannhart, J. (1990) Superconducting transport properties of grain boundaries in YBCO bicrystals, Phys. Rev. B 41, 4038–4049.

    Article  ADS  Google Scholar 

  23. Gross, R., Chaudhari, P., Kawasaki, M. and Gupta, A. (1991) Superconducting transport characteristics of YBCO grain boundary junctions, IEEE Trans. on Magnetics 27, 3227–3230.

    Article  ADS  Google Scholar 

  24. Wako Bussan Co., Ltd., Tokyo, Japan

    Google Scholar 

  25. Ivanov, Z.G., Nilsson, P-A., Winkler, D., Alarco, J.A., Claeson, T., Stepantsov, E.A. and Tzalenchuk, A.Ya. (1991) Weak links and do SQUIDS on artificial nonsymmetric grain boundaries in YBCO, Appl. Phys. Lett. 59, 3030–3032.

    Article  ADS  Google Scholar 

  26. Fischer, G.M., Mayer, B., Schulze H. and Gross, R. (1995) Critical current density distribution and magnetic flux states in YBCO bicrystal grain boundary junctions, IEEE Trans. Appl. Supercond. 5, 2184–2187.

    Article  Google Scholar 

  27. Froehlich, O.M., Schulze, H., Beck, A., Gerdemann, R., Mayer, B., Gross, R. and Huebener, R.P. (1995) Supercurrent density correlation function of YBCO grain boundary Josephson junctions, IEEE Trans. Appl. Supercond. 5, 2188–2191.

    Article  Google Scholar 

  28. Moeckly, B., Ph.D. Dissertation, Cornell Univ. 1994 (unpublished).

    Google Scholar 

  29. Cantor, R., Lee, L.P., Teepe, M., Vinetskiy, V. and Longo, J. (1995) Low-noise, single-layer YBCO dc SQUID magnetometers at 77K, IEEE Trans. Appl. Supercond. 5, 2927–2930.

    Article  Google Scholar 

  30. Dillmann, F. and Siegel, M., (KFA, 1995) unpublished (subm. to Appl. Phys. Lett.).

    Google Scholar 

  31. Simon, R.W., Burch, J.F., Daly, K.P., Dozier, W.D., Hu, R., Lee, A.E., Luine, J.A., Manasevit, H.M., Platt, C.E., Schwarzbeck, S.M., St. John, D., Wire, M.S. and Zani, M.J. (1990) Progress towards a YBCO circuit process, in R.D. McConnell and R. Noufi (eds), Science and Technology of Thin Film Superconductors 2, Plenum Press, New York, 549–558.

    Chapter  Google Scholar 

  32. Jia, C.L., Kabius, B., Urban, K. Herrmann, K., Cui, G.J., Schubert, J., Zander, W., Braginski, A.I. and Heiden, C. (1991) Microstructure of epitaxial YBCO films on step-edge SrTiO3 substrates, Physica C 175, 545–554.

    Article  ADS  Google Scholar 

  33. Jia, C.L., Kabius, B., Urban, K. Herrmann, K., Schubert, J., Zander,W.and Braginski, A.I. (1992) The microstructure of epitaxial YBCO films on steep steps in LaA1O3 substrates, Physica C 196, 211–226.

    Article  ADS  Google Scholar 

  34. Herrmann, K., Zhang, Y., Muck, H. M., Schubert, J., Zander, W., and Braginski, A.I. (1991) Characterization of YB2Cu3O7 Step-Edge Junctions, Supercond. Sci. & Techr. 4, 583–586.

    Google Scholar 

  35. Herrmann, K., Kunkel, G., Siegel, M., Schubert, J., Zander, W., Braginski, Al., Jia, C.L., Kabius, B. and Urban,K. (1995) Correlation of YBCO step-edge junction characteristics with microstructure, J. Appl. Phys. 78, 1131–1139.

    Article  ADS  Google Scholar 

  36. Luine, J., Bulman, J., Burch, J., Daly, K., Pettiette-Hall, C. and Schwarzbek, S. (1992) Characteristics of high performance YBCO step-edge junctions, Appl. Phys. Lett. 61, 1128–1130.

    Article  ADS  Google Scholar 

  37. Berkowitz, Si., De Obaldia, E., Galloway, M.L., Morales, G., Ono, R.H., Beall, J.H., Vale, L.R. and Rudman, D.A. (1993) Etching and annealing of substrates for superconducting multilayers and devices, IEEE Trans. Appl. Supercond. 3, 2950–2952.

    Article  Google Scholar 

  38. Sun, J.Z., Gallagher, W.J., Callegari, A.C., Foglietti, V. and Koch, R.H. (1993) Improved process for high-Tc superconducting step-edge junctions, Appl. Phys. Lett. 63, 1561–1563.

    Article  ADS  Google Scholar 

  39. Bode, M. (1995) Ph.D. Dissertation, Univ. of Giessen, Germany (unpublished).

    Google Scholar 

  40. Missert, N., Harvey, T.E., Ono, R.H. and Reintsema, C.D. (1993) High-Tc multilayer step-edge Josephson junctions and SQUIDs, Appl. Phys. Lett. 63, 1690–1692.

    Article  ADS  Google Scholar 

  41. Glyantsev, V., Divin, Yu, Jia, C.L., Poppe, U. and Siegel, M. (KFA, 1995) High-resistance YBCO step-edge junctions, unpublished.

    Google Scholar 

  42. Edwards, J.A., Satchell, J.S., Chew, N.G., Humphreys, R.G., Keere, M.N. and Dosser, O.D. (1992) YBCO thin-film step junctions on MgO substrates, Appl. Phys Lett. 60, 2433–2435.

    Article  ADS  Google Scholar 

  43. Ramos, J., Seitz, M., Daalmans, G.M., Uhl, D., Ivanov, Z. and Claeson, T. (1993) Noise properties of single-layer YBCO step-edge dc SQUIDS on MgO substrates, Physica C 220, 51–54 and references therein.

    Google Scholar 

  44. Char, K., Colclough, M.S., Garrison, S.M., Newman, N. and Zaharchuk, G. (1991) Biepitaxial grain-boundary junctions in YBCO, Appl. Phys. Lett. 59, 733–735.

    Article  ADS  Google Scholar 

  45. Wu, X.D., Luo, L., Muenchausen, R.E., Springer, K.N. and Foltyn, S. (1992) Creation of 45° grain-boundary junctions by lattice engineering, Appl. Phys. Lett. 60, 1381–1383.

    Article  ADS  Google Scholar 

  46. Delin, K.A. and Kleinsasser, A.W. (1995) Comparative study of the stationary properties of high-Tc proximity-coupled Josephson junctions, IEEE Trans. Appl. Supercond. 5, 2976–2979.

    Article  Google Scholar 

  47. Pauza, A.J., Moore, D.F., Campbell, A.M., Broers, A.N. and Char, K. (1995) Electron beam damaged high-Tc junctions - stability, reproducibility and scaling laws, IEEE Trans. Appl. Supercond. 5, 3410–3413.

    Article  Google Scholar 

  48. Tinchev, S.S. (1990) Investigation of rf SQUIDS made from epitaxial YBCO films, Supercond. Sci. & Tech., 3, 500–503.

    Google Scholar 

  49. FIT (Forschungsgesellschaft f r Informationstechnik mbH), Bad Salzdetfurth, Germany.

    Google Scholar 

  50. Tinchev, S.S. and Hinken, J.H. (1992) Two-loop YBCO rf SQUID magnetometer, in H. Koch and H. Lübbig (eds.) Superconducting Devices and their Applications, Springer-Verlag, Berlin Heidelberg, pp. 102–105.

    Chapter  Google Scholar 

  51. Schmidl, F. Döne, L., Linzen, S., Wunderlich S., Machalett, F., Hübener, U., Schneidewind, H. Seidel, P. (1995) Realization of YBCO thin film dc SQUIDS using step-edge junctions on silicon substrates as well as ion-beam modified microbridges, H.A.Blank (ed.) Proc. 2nd Workshop on HTS Applications, Twente, pp.131–136.

    Google Scholar 

  52. DiIorio, M.S., Yoshizumi, S., Yang, K.-Y., Zhang, J. and Maung, M. (1991) Practical high-Tc junctions and SQUIDs operating above 85K, Appl. Phys. Lett. 58, 2552–2554.

    Article  ADS  Google Scholar 

  53. DiIorio, M.S., Yoshizumi, S., Yang, K.-Y., Zhang, J. and Power, B. (1993) Low-noise dc SQUIDS at 77K, IEEE Trans. Appl. Supercond. 3, 2011–2017.

    Article  Google Scholar 

  54. Ono, R.H., Beall, J.A., Cromar, R.W., Harvey, T.E., Johansson, M.E., Reintsema, C.D. and Rudman, D.A. (1991) High-Tc SNS Josephson microbridges with high-resistance normal metal links, Appl. Phys. Lett. 59, 1126–1128.

    Article  ADS  Google Scholar 

  55. Ono, R.H., Vale, L.R., Kimminau, K.R., Beall, J.A., Cromar, M.W., Reintsema, C.D., Harvey, T.E., Rosenthal, P.A. and Rudman, D.A. (1993) High-Tc SNS junctions for multilevel integrated circuits, IEEE Trans. Appl. Supercond. 3, 2389–2392.

    Article  ADS  Google Scholar 

  56. Rosenthal, P.A., Grossman, E.N., Ono, R.H. and Vale, L.R. (1993) Superconductor-normal metal-superconductor junctions with high characteristic voltage, Appl. Phys. Lett. 63, 1984–1986.

    Article  ADS  Google Scholar 

  57. Reintsema, C.D., Ono, R.H., Barnes, G., Borcherdt, L., Harvey, T.E., Kunkel, G., Rudman, D.A. and Vale, L.R. (1995) The critical current and normal resistance of high-Tc step-edge SNS junctions, IEEE Trans. Appl. Supercond. 5, 3405–3409.

    Article  Google Scholar 

  58. Gao, J., Aarnink, W.A.M., Gerritsma, G.J. and Rogalla, H. (1990) Controlled preparation of all high-Tc SNS-type edge junctions and dc SQUIDS, Physica C 171, 126–130.

    ADS  Google Scholar 

  59. Gao, J., Boguslayskii, Y., Klopman, B.B., Terpstra, D., Wijbrans, R., Gerritsma, G.J. and Rogalla, H. (1992) YBCO/PrBCO/YBCO Josephson ramp junctions, J. Appl. Phys. 72, 575–583.

    Article  ADS  Google Scholar 

  60. Hunt, B.D., Foote, M.C. and Bajuk, L.J. (1991) All-high-Tc edge-geometry weak links utilizing YBCO barrier layers, Appl. Phys. Lett. 59, 982–984.

    Article  ADS  Google Scholar 

  61. Chin, D.K. and Van Duzer, T. (1991) Novel all-high-Tc epitaxial Josephson junctions, Appl. Phys. Lett. 58, 753–755.

    Article  ADS  Google Scholar 

  62. Char, K., Colclough, M.S., Geballe, T.H. and Myers, K.E. (1993) High Tc superconductor-normal-superconductor Josephson junctions using CaRuO3 as the metallic barrier, Appl. Phys. Lett. 62, 196–198.

    Article  ADS  Google Scholar 

  63. Antognszza, L., Char, K., Geballe, T.H., King, L.L.H. and Sleight, A.W. (1993) Josephson coupling of YBCO through a ferromagnetic barrier SrRuO3, Appl. Phys. Lett. 63, 1005–1007.

    Article  ADS  Google Scholar 

  64. Char, K., Antognazza, L. and Geballe, T.H. (1994) Properties of YBCO/YB2Cu2.79Co0.21O7-x/YBC0 edge junctions, Appl. Phys. Lett. 65, 904–906.

    Article  ADS  Google Scholar 

  65. Antognazza,L., Moeckly, B.H., Geballe, T.H. and Char, §¬. (1995) Properties of high Tc Josephson junctions with Y0.7Ca0.3Ba2Cu3O7-δ barrier layers, Phys. Rev. B 52, 4559–4567.

    Article  ADS  Google Scholar 

  66. Polturak, E., koren, G., Cohen, D., Aharoni, E. and Deutscher, G. (1991) The proximity effect in YBCO/Y0.6Pr0.4Ba2Cu3O7/YBCO SNS junctions, Phys. Rev. Lett. 67, 3038–3041.

    Article  ADS  Google Scholar 

  67. Stölzel, C., Siegel, M., Adrian, G., krimmer, C., Söllner, J., Wilkens, W., Schulz, G. and Adrian, H. (1993) Transport properties of YBCO/Y0.3Pr0.7Ba23O7-δ/YBCO Josephson junctions, Appl. Phys. Lett. 63, 2970–2972.

    Article  ADS  Google Scholar 

  68. Verhoeven, M.A.J., Gerritsma, G.J. and Rogalla, H., Ramp type HTS junctions with PrBaCuGaO barriers, EEE Trans. Appl. Supercond. 5, 2095–2098.

    Google Scholar 

  69. Dömel, R., Horstmann, C., Siegel, M. and Braginski, A.I. (1995) Resonant tunneling transport across YBCO-SrRuO3 interfaces, Appl. Phys. Lett. 67, 1775–1777.

    Article  ADS  Google Scholar 

  70. Satoh, T., Kupriyanov, M.Yu., Tsai, J.S., Hidaka, M. and Tsuge, H. (1995) Resonant tunneling transport in YBCO/PBCO/YBCO edge-type Josephson junctions, IEEE Trans. Appl. Supercond. 5, 2612–2615.

    Article  Google Scholar 

  71. Jia, C.L., Faley, M.I., Poppe, U. and Urban, K. (1995) The effect of chemical and ion-beam etching on the atomic structure of interfaces in YBCO/PBCO Josephson junctions, Appl. Phys. Lett. 67, 3635–3637.

    Article  ADS  Google Scholar 

  72. Koren, G., Aharoni, E., Polturak, E. and Cohen, D. (1991) Properties of all YBCO Josephson edge junctions prepared by in situ laser ablation deposition, Appl. Phys. Lett. 58, 634–636.

    Article  ADS  Google Scholar 

  73. Strikovsky, M.D., Kahlmann, F., Schubert, J., Zander, W., Glyantsev, V., Ockenfuss, G. and Jia, C.L. (1995) Fabrication of YBCO thin-film flux transformers using a novel microshadow mask technique for in situ patterning, Appl. Phys. Lett. 66, 3521–3523.

    Article  ADS  Google Scholar 

  74. Faley, M.I., Poppe, U., Jia, C.L. and Urban, K (1995) Proximity-effect in edge-type junctions with PBCO barriers prepared by Br-ethanol etching, IEEE Trans. Appl. Supercond. 5, 2091–2094.

    Article  Google Scholar 

  75. Faley, M.I., Popppe, U., Urban, K., Hilgenkamp, H., Hemmes, H., Aarnink, W., Flokstra, J. and Rogalia, H. (1995) Noise properties of do-SQUIDS with quasiplanar YBCO Josephson junctions, Appl. Phys. Lett. 67, 2087–2089.

    Article  ADS  Google Scholar 

  76. Laibowitz, R.B., Sun, J.Z., Foglietti, V., Koch, R.H., Altman, R.A. and Gallagher, W.J. (1995) Properties of multilevel ramp edge junctions and SQUIDs with laser-ablated SrTiO3barriers, IEEE Trans. Appl. Supercond. 5, 2620–2623.

    Article  Google Scholar 

  77. Grundler, D., Krumme, J.-P., David, B. and Doessel, O. (1995) Multilevel devices of YBCO with NdGaO3 barrier, IEEE Trans. Appl. Supercond. 5, 2751–2754.

    Article  Google Scholar 

  78. Jaycox, J.M. and Ketchen, M.B. (1981) Planar coupling scheme for ultra low noise do SQUIDs, IEEE Trans. on Magnetics, MAG-17, 400–403.

    Article  ADS  Google Scholar 

  79. Ketchen, M.B. and Jaycox, J.M. (1982) Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil, Appl. Phys. Lett. 40, 736–738.

    Article  ADS  Google Scholar 

  80. Ketchen, M.B., Gallagher, W.J., Kleinsasser, A.W., Murphy, S. and Clem, J.R. (1985) dc SQUID flux focuser, in H.D. Hahlbohn and H. Lübbig (eds.) SQUID ‘85: Superconducting QUantum Interference Devices and their Applications,Walter de Gruyter, Berlin, pp. 865–871.

    Google Scholar 

  81. Matsuda, M., Murayama, Y., Kiryu, S., Kasai, N., Kashiwaya, S., Koyanagi, M., Endo,T. and Kuriki, S. (1991) Directly-coupled dc SQUID magnetometers made of BSCCO oxide films, IEEE Trans. on Magnetics 27, 3043–3046.

    Article  ADS  Google Scholar 

  82. Koelle, D., Miklich, A.H., Ludwig, F., Dantsker, E., Nemeth, D.T. and Clarke, J. (1993) dc SQUID magnetometers from single layers of YBCO, Appl. Phys. Lett. 63, 2271–2273.

    Article  ADS  Google Scholar 

  83. Toepfer, H. (1991) Inductance determination in superconducting structures, in W. Krech, P. Seidel and H.-G. Meyer (eds) Superconductivity and Cryoelectronics, World Scientific, Singapore, pp. 170–177.

    Google Scholar 

  84. Gupta, K.C., Garg, R. and Bahl, I.J. (1979) Microstrip Lines and Slotlines, Artech House, Dedham, MA, pp. 263–265.

    Google Scholar 

  85. Enpuku, K., Shimomura, Y. and Kisu, T. (1993) Effect of thermal noise on the characteristics of a high Tc SQUID, J. Appl. Phys. 73, 7929–7934.

    Article  ADS  Google Scholar 

  86. Zhang, Y., Mück, M., Herrmann, K., Zander, W., Schubert, J., Braginski, A.I. and Heiden, Ch. (1993) Sensitive if SQUIDs and magnetometers operating at 77K, IEEE Trans. Appl. Supercond. 3, 2465–2468. In this work the Ls estimates were too low by a factor of 1.25.

    Article  Google Scholar 

  87. Jackel, L.D. and Buhrman, R.A. (1975) Noise in the rf SQUID, J. Low Temp. Phys. 19, 201–245.

    Article  ADS  Google Scholar 

  88. Koch, R.H. (IBM) Unpublished simulation results, private information.

    Google Scholar 

  89. Zhang, Y., Mück, M., Herrmann, K., Zander, W., Schubert, J., Braginski, A.I. and Heiden, Ch. (1992) Low-noise YBCO rf SQUID magnetometers, Appl. Phys. Lett. 60, 645–647.

    Article  ADS  Google Scholar 

  90. Zhang, Y., Kruger, U., Kutzner, R., Wördenweber, R., Schubert, J., Zander, W., Sodtke, E., Braginski, A.I. and Strupp,M. (1994) Single layer YBCO if SQUID magnetometers with direct-coupled pickup coils and flip-chip flux transformers. Appl. Phys. Lett. 65, 3380–3382.

    Article  ADS  Google Scholar 

  91. Zhang, Y., Tavrin, Y., Krause, H.-J., Bousack, H., Braginski, Al., Kalberkamp, U., Matzander, U., Burghoff, U. and Trahms, L. (1995) Applications of high-temperature SQUIDs, Applied Superconductivity 3, 367–381.

    Article  Google Scholar 

  92. Tanaka, S., Itozaki, H. and Nagaishi, T. (1993) Properties of YBCO large washer SQUID, Jpn. J. Appl. Phys. 32, L662–L664.

    Article  ADS  Google Scholar 

  93. Itozaki, H., Tanaka, S., Nagaishi, T. and Kado, H. (1994) Multi-Channel High-Tc SQUID, IECE Trans. Electron. E77-C, 1185–1190.

    Google Scholar 

  94. Lee, L.P., Longo, J., Vinetskiy, V. and Cantor, R. (1995) Low-noise YBCO directcurrent SQUID magnetometer with direct signal injection, Appl. Phys. Lett. 66, 1539–1541.

    Article  ADS  Google Scholar 

  95. Lee, L.P. Histogram presented at the ASC’94 (unpublished).

    Google Scholar 

  96. Miklich, A.H., Koelle, D., Shaw, T.J., Ludwig, F., Nemeth, D.T., Dantsker, E., Alford, N.McN., Button, T.W. and Colclough, M.S. (1994) Low-frequency excess noise in YBCO dc SQUIDs cooled in static magnetic fields, Appl. Phys. Lett. 64, 3494–3496.

    Google Scholar 

  97. Tavrin, Y., Zhang, Y., Muck, M., Braginski, A.I. and Heiden, C. (1993) YBCO thin film SQUID gradiometer for biomagnetic measurements, Appl. Phys. Lett. 62, 1824–1826.

    Google Scholar 

  98. Tavrin, Y., Zhang, Y., Wolf, W. and Braginski, A.I. (1994) A second-order SQUID gradiometer operating at 77K, Supercond. Sci. Technol. 7, 265–268.

    ADS  Google Scholar 

  99. Kirtley, J.R., Ketchen, M.B., Tsuei, C.C., Sun, J.Z., Gallagher, W.J., Yu-Jahres, L.S., Gupta, A., Stawiasz, K.G. and Wind, S.J. (1996) Scanning SQUID microscopy. IBM J.of Research & Development 39, 655–668.

    Article  Google Scholar 

  100. Sun, J.Z., Gallagher, W.J. and Koch, R.H. (1994) Initial-vortex-entry-related magnetic hysteresis in thin-film SQUID magnetometers, Phys. Rev. B 50, 13664–13673.

    Article  ADS  Google Scholar 

  101. Sun, J. , Yu-Jahnes, L.S., Foglietti, V., Koch, R.H. and Gallagher, W.J. (1995) Properties of YBCO thin film single-level dc SQUIDs fabricated using step edge junctions, IEEE Trans. Appl. Supercond. 5, 2107–2111.

    Article  Google Scholar 

  102. Koch, R.H., Sun, J.Z., Foglietti, V. and Gallagher, W.J. (1995) Flux-dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field, Appl. Phys. Lett. 67, 709–711.

    Article  ADS  Google Scholar 

  103. Schöne, S., Muck, M. and Heiden, C. (1996) Reduction of low-frequency excess noise in SQUIDS by applying high-frequency magnetic fields, Appl. Phys. Lett. 68, 859–861.

    Article  ADS  Google Scholar 

  104. Glyantsev, V.N., Tavrin, Y., Zander, W., Schubert, J. and Siegel, M. (1996) Stability of dc and rf SQUID without magnetic shielding, Supercond. Sci. Technol. 9, 105A–108A.

    Article  ADS  Google Scholar 

  105. Ishikawa, N., Nagata, K., Kasai, N. and Kiryu, S. (1993) Effect of rf interference on characteristics of dc SQUID system, IEEE Trans. Appl. Supercond. 3, 1910–1913.

    Article  Google Scholar 

  106. Koch, R.H., Foglietti, V., Rozen, J.R., Stawiasz, K.G., Ketchen, M.B., Lathrop, D.K., Sun, J.Z. and Gallagher, W.J. (1994) Effects of radio frequency radiation on the dc SQUID, Appl. Phys. Lett. 65, 100–102.

    Article  ADS  Google Scholar 

  107. Knappe, S., Drung, D., Schurig, T., Koch, H., Klinger, M. and Hinken, J. (1992) A planar YBCO gradiometer at 77K, Cryogenics 32, 881–884..

    Article  Google Scholar 

  108. Daalmans, G.M., Bär, L., Kühnl, M., Uhl, D., Selent, M. and Ramos, J. (1995) Single layer ‘YBCO gradiometer, IEEE Trans. Appl. Supercond. 5, 3109–3112

    Article  Google Scholar 

  109. Matlashov, A.N., Koshelets, V.P., Kalashnikov, P.V., Zhuravlev, Yu.E., Slobodchikov, V.Yu., Kovtonyuk, S.A. and Filippenko, L.V. (1991) High sensitive magnetometers and gradiometers based on dc SQUIDs with flux focusers, IEEE Trans. on Magnetics, 27, 2963–2966.

    Article  ADS  Google Scholar 

  110. Erne, S.N., Hahlbohm, H.-D., Scheer, J. and Trontelj, Z. (1981), The Berlin shielded room - performances, in: S.N. Erne, H.-D. Hahlbohm and H. Lübbig (editors) Biomagnetism, de Gruyter-Verlag, Berlin, 79–87.

    Google Scholar 

  111. Koelle, D., Miklich, A.H., Dantsker, E., Ludwig, F., Nemeth, D.T., Clarke, J., Ruby, W. and Char, K. (1993) High performance dc SQUID magnetometers with single layer YBCO flux trapsformers, Appl. Phys. Lett. 63, 3630–3632.

    Article  ADS  Google Scholar 

  112. Dantsker, E., Ludwig, F., Kleiner, R., Clarke, R., Teepe, M., Lee, L.P., McN. Alford, N. and Button, T. (1995) Addendum: “Low noise YBC0-SrTiO3-YCB0 multilayers for improved superconducting magnetometers”, Appl. Phys. Lett. 67, 725–726.

    Article  ADS  Google Scholar 

  113. Drung, D., Ludwig, F., Müller, W., Steinhoff, U., Trahms, L., Koch, H., Shen, Y.G., Jensen, M.B., Vase, P., Hoist, T., Freltoft, T. and Curio, G. (1996) Integrated YBCO magnetometer for biomagnetic measurements, Applied Physics Lett. 68, 1421–1423.

    Article  ADS  Google Scholar 

  114. Shen, Y.Q., Sun, Z.J., Kromann, R., Holst,T., Vase, P. and Freloft, T. (1995) Integrated high Tc superconducting magnetometer with multiturn input coil and grain boundary junctions, Appl. Phys. Lett. 67, 2081–2083.

    Article  ADS  Google Scholar 

  115. Kingston, J.J., Wellstood, F.C., Lerch, P. Miklich, A.H. and Clarke, J. (1990) Multilayer YBCO-SrTiO3-YBCO films for insulating crossovers, Appl. Phys. Lett. 56, 189–191.

    Article  ADS  Google Scholar 

  116. Oh, B., Koch, R.H., Gallagher, W.J., Robertazzi, R.P. and Eidelloth, W. (1991) Multilevel YBCO flux transformers with high-Tc SQUIDs, Appl. Phys.Lett. 59, 123–125.

    Article  ADS  Google Scholar 

  117. Lee, L.P., Char, K., Colclough, M.S. and Zaharchuk, G. (1991) Monolithic 77K dc SQUID magnetometer, Appl. Phys. Lett. 59, 3051–3053.

    Article  ADS  Google Scholar 

  118. Grundier, D., David, B., Eckart, R. and Dössel, O. (1993) Highly sensitive YBCO dc SQUID magnetometer with thin-film flux transformer, Appl. Phys. Lett. 63, 2700–2702.

    Article  ADS  Google Scholar 

  119. Ludwig, F., Koelle, D., Dantsker, E., Nemeth, D.T., Miklich, A.H. and Clarke, J. (1995) Low noise YBCO-SrTiO3-YBCO multilayers for improved superconducting magnetometers, Appl. Phys. Lett. 66, 373–375.

    Article  ADS  Google Scholar 

  120. DiIorio M.S., Yang, K.-Y. and Yoshizumi, S. (1995) Biomagnetic measurements using low-noise integrated SQUID magnetometers operating in liquid nitrogen, Appl. Phys. Lett. 67, 1926–1928.

    Article  ADS  Google Scholar 

  121. Gassig, U., Schubert, J. and Zander, W. (1992), unpublished KFA results.

    Google Scholar 

  122. Ma, Q.Y. (1994) Multilayer HTS device processing with impurity ion implantation, Extended abstracts of HTSED ‘84 (Whistler, B.C.), FED-136, 210–213.

    Google Scholar 

  123. Keene, M.N., Satchell, J.S., Goodyear, S.W., Humphreys, R.G., Edwards, J.A., Chew, N.G. and Lander, K. (1995) Low noise HTS gradiometers and magnetometers constructed from YBCOJPBCO thin films, IEEE Trans. Appl. Supercond. 5, 2923–2926 (CAM junctions used in that work are not discussed in this chapter).

    Article  Google Scholar 

  124. Ockenfuss, G. (1995) Ph.D. Dissertation, Univ. Giessen, Germany (unpublished).

    Google Scholar 

  125. Zimmermann, J.E. (1971) Sensitivity enhancement of SQUIDs through the use of fractional-turn loops, J. Appl. Phys. 42, 4483–4487.

    Article  ADS  Google Scholar 

  126. Drung, D., Cantor, R., Peters, M., Scheer, H.J. and Koch, H. (1990) Low-noise high-speed dc SQUID magnetometer with simplified feedback electronics, Appl. Phys. Lett. 57, 406–408.

    Article  ADS  Google Scholar 

  127. Drung, D., Cantor, R., Peters, M., Ryhänen, T. and Koch, H. (1991) Integrated dc SQUID magnetometer with high dV/dB, IEEE Trans. on Magnetics, 27, 3001–3004.

    Article  ADS  Google Scholar 

  128. Drung, D., Knappe, S. and Koch, H. (1995) Theory of the multiloop dc SQUID magnetometer and experimental verification, J. Appl. Phys. 77, 4088–4098.

    Article  ADS  Google Scholar 

  129. Ludwig, F., Dantsker, E., Kleiner, R., Koelle, D., Clarke, J., Knappe, S., Drung, D., Koch, H., McN Alford, N. and Button, T.W. (1995) Integrated high-Tc multiloop magnetometer, Appl. Phys. Lett. 66, 1418–1420.

    Article  ADS  Google Scholar 

  130. David, B., Grundler, D., Krey, S., Doormann, V., Eckart, R., Krumme, J.P., Rabe, G. and Doessel, O. (1996) High-Tc SQUID magnetometers for biomagnetic measurements, Supercond. Sci. Technol. 9, 96A–99A.

    ADS  Google Scholar 

  131. Drung, D., Dantsker, E., Ludwig, F., Koch, H., Kleiner, R., Clarke, J., Krey, S., Reimer, D., David, B. and Doessel, O. (1996) Low-noise YBCO SQUID magnetometers operated with additional positive feedback, Appl. Phys. Lett. 68 1856–1858.

    Article  ADS  Google Scholar 

  132. de Waal, V.J., van Nieuvenhuyzen, G.J. and Klapwijk, T.M. (1983) Design and performance of integrated dc SQUID gradiometers, IEEE Trans. on Magnetics 19, 648–651.

    Article  ADS  Google Scholar 

  133. Sweeny, M.F. (1985) An all-thin-film SQUID for ambient field operation, IEEE Trans. on Magnetics 21, 656–657.

    Article  ADS  Google Scholar 

  134. Masalov, V.V., Samoos, A.N., Matlashov, A.N., Slobodchikov, V.Y. and Maslennikov, Y.V. (1995) Multi-loop, self-shielded dc SQUID with meander-shaped input coil, IEEE Trans. Appl. Supercond. 5, 3238–3240.

    Article  Google Scholar 

  135. Muck, Diehl, D. and G., Heiden, C. (1990) Planar microwave rf SQUID gradiometer, Cryogenics 30, 1149–1151.

    Article  Google Scholar 

  136. Zhang, Y., Muck, M., Bode, M., Herrmann, K., Schubert, J., Zander, W., Braginski, A.I. and Heiden, C. (1992) Microwave rf SQUID integrated into a planar YBCO resonator, Appl. Phys. Lett. 60, 2303–2305.

    Article  ADS  Google Scholar 

  137. Zhang, Y., Mück, M., Braginski. A.I. and Töpfer, H. (1994) High-sensitivity microwave rf SQUID operating at 77K, Supercond. Sci. Technol. 7, 269–272.

    ADS  Google Scholar 

  138. Gottschlich, M., Zhang, Y., Soltner, H., Zander, W., Schubert, J. and Braginski, A.I. (1995) Investigation of HTS rf SQUIDs with planar tank circuits, in D. Dew-Hughes (ed.) Applied Superconductivity 1995, 2, 1553–1556.

    Google Scholar 

  139. Kornev, V.K., Likharev, K.K., Snigirev, O.V., Soldatov, Ye.S., Khanin, V.V., (1980) Radio Eng. Electronic Phys. 25, 122–125.

    Google Scholar 

  140. Zhang, Y., Gottschlich, M., Soltner, H., Sodtke, E., Schubert, J., Zander, W. and Braginski, A.I. (1995) Operation of high-temperature rf SQUID magnetometers using dielectric SrTiO3 resonators, Appl. Phys. Lett. 67, 3183–3185.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braginski, A.I. (1996). Fabrication of High-Temperature Squid Magnetometers. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics