Skip to main content

Squid Gradiometers in Real Environments

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

Use of SQUIDs for stationary magnetic field detection (e.g., in MagnetoEncephaloGraphy, MEG) is discussed. Such devices operate in the presence of environmental noise and must be provided with shielding and/or noise cancellation techniques. First, shielded and unshielded environments are characterised and some specific noise sources are examined in detail. Then, gradiometers of various orders and their construction by hardware and software methods are described, and the gradiometer errors (represented by common mode and eddy current vectors) are analysed. Noise cancellation by high-order spatial gradiometers is examined in detail, and the gradiometer performance in shielded and unshielded environments is evaluated experimentally using a whole cortex MEG system. Successful operation of high-order gradiometers in unshielded environments is demonstrated on examples of human MEG.experiments. Adaptive noise cancellation also is examined, and frequency independent and frequency dependent methods are described. The adaptive and gradiometer noise cancellation performances are compared, and it is shown that the adaptive methods are effective only under special circumstances when the noise character is time independent, while the gradiometers are quite universal and work well even when the noise character is changing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wikswo, J. P. Jr. (1995) SQUID Magnetometers for Biomagnetism and Nondestructive Testing: Important Questions and Initial Answers. Applied Superconductivity Conference, Boston, October 1994. IEEE Trans. Appl. Sup. 5

    Google Scholar 

  2. Nakasato, N., Fujita, S., Matani, A., Tamura, I., Fujiwara, S. and Yoshimoto, T. (1995) Clinical Application of the Whole Head MEG: Auditory Evoked Response in Patients with Intracranial Structural Lesions. To be published in: Biomagnetism: Fundamental Research and Clinical Applications, C. Baumgartner, L. Deecke, G. Stroink, S. Williamson (Eds), Amsterdam, Elsevier/IOS-Press, 1995.

    Google Scholar 

  3. Nakasato, N., Fujita, S., Ski, K., Kawamura, T., Matani, A., Tamura, I., Fujiwara, S. and Yoshimoto, T. (1995) Functional localization of bilateral auditory cortices using an MRI-linked whole head magneto-encephalography (MEG) system, Electroencephalogr. Clin. Neurophysiol. 94, 183–190.

    Article  Google Scholar 

  4. Ribary, U., Llinas, R., Ledo, F., Mogilner, A., Jagow, R., Nomura, M. and Lopez, L. (1992) The spatial and temporal organization of the 40 Hz response in human brain, in Hoke, M., Erne, S. N., Okada, Y. C. and Romani, G. L. (eds.), Biomagnetism: Clinical Aspects, Proceedings of the 8th International Conference on Biomagnetism,Munster, 19–24 August 1991, pp. 159–163.

    Google Scholar 

  5. Drung, D., Absmann, Curio, G., Mackert, B.-M., Matthies, K.-P., Matz, H., Peters, M., Scheer, H: J. and Koch, H. (1995) The PTB 83-SQUID System for Biomagnetic Applications in a Clinic. Applied Superconductivity Conference, Boston, October 1994. IEEE Trans. Appl. Sup. 5

    Google Scholar 

  6. Ahlfors, S. P., Ilmoniemi, R. J., Kajola, M. J., Knuutila, J. E. T. and Simula, J. T. (1995) Whole-Head Distribution of Visual Evoked Magnetic Fields, To be published in: Biomagnetism: Fundamental Research and Clinical Applications, C. Baumgartner, L. Deecke, G. Stroink, S. Williamson (Eds), Amsterdam, Elsevier/IO5-Press, 1995.

    Google Scholar 

  7. Matsuba, H., Shintomi, K., Yahara, A., Irisawa, D., Imai, K., Yoshida, H. and Seike, S. (1995) Superconducting Shield Enclosing a Human Body for Biomagnetism Measurement. To be published in: Biomagnetism: Fundamental Research and Clinical Applications, C. Baumgartner, L. Deecke, G. Stroink, S. Williamson (Eds), Amsterdam, ElsevierlIOS-Press, 1995.

    Google Scholar 

  8. Cheyne, D., Vrba, J., Crisp, D., Betts, K., Burbank, M., Cheung, T., Fife, A. A., Haid, G., Kubik, P. R., Lee, S., McCubbin, J., McKay, J., McKenzie, D., Spear, P., Taylor, B., Tillotson, M. and Weinberg, H..,Basar, E. and Tsutada, T. (1992) Use of an unshielded 64 channel whole-cortex MEG system in the study of normal and pathological brain function, Proceedings of the Satellite Symposium on Neuro-science and Technology, pp 46–50, 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, November.

    Google Scholar 

  9. Vrba, J., Betts, K., Burbank, M., Cheung, T., Fife, A. A., Haid, G., Kubik, P. R., Lee, S., McCubbin, J., McKay, J., Mckenzie, D., Spear, P., Taylor, B., Tillotson, M., Cheyne, D. and Weinberg, H.. (1993) Whole cortex, 64 channel SQUID biomagnetometer system, IEEE Trans. Appl. Sup. 3, 1878–1882.

    Google Scholar 

  10. Vrba, J., Taylor, B., Cheung, T., Fife, A. A., Haid, G., Kubik, P. R., Lee, S., McCubbin, J. and Burbank, M. B. (1994) Noise Cancellation by Whole-Cortex SQUID MEG System. Applied Superconductivity Conference, Boston, October 1994. IEEE Trans. Appl. Sup. 5, 2118–2123.

    Article  Google Scholar 

  11. Clem, T. R. (1994) Superconducting Magnetic Sensors Operating from a Moving Platform. Applied Superconductivity Conference, Boston, October 1994. IEEE Trans. Appl. Sup. 5

    Google Scholar 

  12. Ainuneal Manufacturing Corp., 4737 Darrah Street, Philadelphia, PA 19124, USA.

    Google Scholar 

  13. Vacuumsclin’elze GmbH, Hanau, Germany; Shielded Room model AK-3.

    Google Scholar 

  14. Tokin Corporation, 6–7–1 Koriyama Tihakuku, Sendai-City, Miyagi-pref, 982, Japan.

    Google Scholar 

  15. Sullivan, G. W. and Flynn, E. R. (1987) Performance of the Los Alamos Shielded Room, in K. Atsumi, M. Kotani, S. Ueno, T. Katila, S. J. Williamson (eds.), Biomagnetism 87,6th International Conference on Biomagnetism,Tokyo, Japan, August 27–30, Tokyo Denki University Press, Tokyo, pp.486–489.

    Google Scholar 

  16. Kelha, V. O.(1981) Construction and performance of the Otaniemi magnetically shielded room., in S.N. Erne, H. D. Hahlbohm, H. Lubbig (eds.), Biomagnetism,Proceedings of the Third International Workshop on Biomagnetism, Berlin, May 1980, Walter de Gruyter, Berlin, New York, 1981.

    Google Scholar 

  17. Erne, S. N., Hahlbohm, H.-D., Scheer, H.. and Trontelj, Z. (1981) The Berlin Magnetically Shielded Room (BMSR) Section B - Performances, in S. N. Erne, H. D. Hahlbohm, H. Lubbig (eds.), Biomagnetism,Proceedings of the Third International Workshop on Biomagnetism, Berlin, May 1980, Walter de Gruyter, Berlin, New York, 1981.

    Google Scholar 

  18. Stroink, G., Blackford, B., Brown, B. and Horacek, M. (1981) Aluminum Shielded Room for Biomagnetic Measurements. Rev. Sci. Instrum. 52(3), 463–468.

    Article  ADS  Google Scholar 

  19. Flynn, E. R., Los Alamos National Laboratory, private communication

    Google Scholar 

  20. Furukawa Electric Co., Ltd., 2–4–3 Okano, Nishi-ku, Yokohama 220, Japan

    Google Scholar 

  21. Carelli, P., Modena I. and Romani G. L. (1982) Detection Coils, in S. J. Williamson, G. L. Romani, L. Kaufman, and I. Modena (eds.), NATO ASI Biomagnetism,An Interdisciplinary Approach, Sep 1–12, Rome, Italy, Plenum Press, New York and London.

    Google Scholar 

  22. Katila, T. (1989) Principles and applications of SQUID sensors, in S. J. Williamson, M. Hoke, G. Stroink, M. Kotani (eds.), Advances in Biomagnetism,Proceedings of the 7th international conference on biomagnetism held in August 1989 in New York, New York, Plenum Press, New York and London, pp.19–32.

    Chapter  Google Scholar 

  23. Cantor, R., Drung, D., Erne, S.N. and Koch H. (1991) Electronic Gradiometric Balancing Capabilities of dc SQUID Magnetometer System for Biomagnetism, 8th International Conference on Biomagnetism,Munster, August 18–24, 1991, Germany

    Google Scholar 

  24. Katila, T. (1981) Instrumentation for biomedical applications, in S. N. Erne, H. D. Hahlbohm, H. Lubbig (eds.), Biomagnetism,Proceedings of the Third International Workshop on Biomagnetism, Berlin, May 1980, Walter de Gruyter, Berlin, New York, 1981.

    Google Scholar 

  25. Fraser-Smith, A. C. and Buxton, J. L. (1975) Superconducting Magnetometer Measurements of Geo-magnetic Activity in the 0.1 to 14 Hz Frequency Range, J. Geophys. Res. 80, 3141–3147.

    Article  ADS  Google Scholar 

  26. Mathematica, Wolfram Research Inc., 100 Trade Center Drive, Champaign, Illinois 61820–7237, USA

    Google Scholar 

  27. Hughes, B., PowerTech Labs Inc., Surrey, B.C., Canada, private communication.

    Google Scholar 

  28. Williamson, S. J. and Kaufman, L. (1981) Biomagnetism, Journal of Magnetism and Magnetic Materials 22,129–201

    Article  ADS  Google Scholar 

  29. Wynn, W. M., Frahm, C. P., Carroll, P. J., Clark, R. H., Wellhoner, J. and Wynn, M. J. (1975) Advanced Superconducting Gradiometed Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. Mag. MAG-11, 701–707.

    Article  ADS  Google Scholar 

  30. Sarwinski, R. E. (1977) Superconducting Instruments, Cryogenics 17, 671–679.

    Article  Google Scholar 

  31. Brenner, D., Kaufman, L. and Williamson, S. J. (1977) Application of a SQUID for Monitoring Magnetic Response of the Human Brain, IEEE Trans. Mag. MAG-13, 365–368.

    Article  ADS  Google Scholar 

  32. Williamson, S. J., Pelizzone, M., Okada, Y., Kaufman, L., Crum, D. B. and Marsden, J. R. (1984) Magnetoencephalography with and Array of SQUID Sensors, in Collan, H., Berglund, P. and Krusius, M. (eds.), Proceedings of the Tenth International Cryogenic Engineering Conference, Butterworth, Guildford, pp.339–348.

    Google Scholar 

  33. Matlashov, A., Zhuravlev, Yu., Lipovich, A., Alexandrov, A., Mazaev, E., Slobodchikov, V. and Washiewski, O. (1989) Electronic Noise suppression in multi-channel neuromagnetic system, in S. J. Williamson, M. Hoke, G. Stroink, M. Kotani (eds.), Advances in Biomagnetism, Proc. 7th Int. Conf. on Biomagnetism, New York, N.Y., pp. 725–728, August 1989.

    Chapter  Google Scholar 

  34. Zijlstra, H. (1967) Experimental Methods in Magnetism, in E. P. Wohlfarth (ed.), Series of Monographs on Selected Topics in Solid State Physics, North-Holland Publishing Company, Amsterdam, John Wiley & Sons, Inc., New York, 1967.

    Google Scholar 

  35. Alldred, J. C. and Scollar, I. (1967) Square Cross Section Coils for the Production of Uniform Magnetic Fields, J. Sci. Instrum. 44, 755–760.

    Article  ADS  Google Scholar 

  36. Garrett, M. W. (1951) Axially Symmetric Systems for Generating and Measuring Magnetic Fields. Part I, J. Appl. Phys. 22, 1091–1107.

    Article  ADS  Google Scholar 

  37. Merritt, R., Purcel, C. and Stroink, G. (1983) Uniform magnetic field produced by three, four and five square coils, Rev. Sci. 1nstr.,54, 879–882.

    Article  Google Scholar 

  38. Vrba, J. (1979) Gradiometer Balancing by Motion, CTF Internal Report, CI-182–0779.

    Google Scholar 

  39. Williamson, S. J., Robinson, S. E. and Kaufman, L. (1987) Methods and Instrumentation for Biomagnetism, Bio Magnetism ‘87, Proceedings of the Sixths International Conference on Biomagnetism,Tokyo, Japan, August 27–30, 1987.

    Google Scholar 

  40. Vrba, J., Fife, A. A., Burbank, B. M., Weinberg, H.. and Brickett, P. A. (1982) Spatial Discrimination in SQUID Gradiometers and 3rd Order Gradiometer Performance, Can. J. Phys. 60, 1060–1073.

    Article  ADS  Google Scholar 

  41. Vrba, J. Haid, G., Lee, S., Taylor, B., Fife, A. A.,Kubik, P., McCubbin, J. and Burbank, M. B. (1991) Biomagnetometers for Unshielded and Well Shielded Environments, Clin. Phys. Physiol. Meas. 12, Suppl. B, 81–86.

    Article  Google Scholar 

  42. Drung, D. (1991) Performance of an Electronic Gradiometer in Noisy Environments, in H. Koch and H. Lubbig (eds.), SQU1D’91, Superconducting Devices and their Applications, Berlin, June 18–21, 1991, Springer Proceedings in Physics.

    Google Scholar 

  43. W. Becker, V. Dickmann, R. Jurgens and C. Kornhuber. (1993) First experiences with a multichannel software gradiometer recording normal and tangential components of MEG, Physiol.Meas. 14, A45–A50.

    Article  Google Scholar 

  44. Diekkmann, V., Jurgens R., Becker, W., Elias, H.., Ludwig, W. and Vodel, W. (1995) RF- to DC-SQUID Upgrade of a 28-Channel Magnetoencephalography (MEG) System, submitted to Measurement Science and Technology.

    Google Scholar 

  45. CTF Systems Inc., 15–1750 McLean Avenue, Port Coquitlam, B.C., Canada, V3C 1M9.

    Google Scholar 

  46. Bruno, A. C., Dolce, C. S., Soares, S. D. and Ribeiro, P. C. (1989) Spatial Fourier Technique for Calibrating Gradiometers, in S. J. Williamson, M. Hoke, G. Stroink, M. Kotani (eds.), Advances in Biomagnetism,Proceedings of the 7th international conference on biomagnetism held in August 1989 in New York, New York, Plenum Press, New York and London, pp.709–712.

    Google Scholar 

  47. Vrba, J., Betts, K., Burbank, B. M., Cheung, T., Cheyne, D., Fife, A. A., Haid, G., Kubik, P. R., Lee, S., McCubbin, J., McKay, J., Mckenzie, D., Mori, K., Spear, P., Taylor, B., Tillotson, M. and Xu, G. (1995) Whole Cortex 64 Channel System for Shielded and Unshielded Environments, to be published in: Biomagnetism: Fundamental Research and Clinical Applications,C. Baumgartner, L. Deecke, G. Stroink, S. Williamson (Eds), Amsterdam, Elsevier/IOS-Press, 1995.

    Google Scholar 

  48. Bendat, J. S. and Piersol, A. G. (1986) Random Data, John Willey & Sons, New York, Chichester, Brisbane, Toronto, Singapore.

    Google Scholar 

  49. Zimmerman, J. E. (1977) SQUID instruments and shielding for low level magnetic measurements, J. Appl. Phys. 48, 702–710.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vrba, J. (1996). Squid Gradiometers in Real Environments. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics