Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

Superconducting quantum interference devices (SQUIDs) are the most sensitive devices for measuring weak magnetic fields. Beside the SQUID itself, the design of the read-out electronics decisively determines the performance of the whole sensor. In standard read-out electronics, a cooled impedance-matching transformer between SQUID and preamplifier, and a flux modulation technique are employed. Recently, several novel SQUID read-out concepts without flux modulation have been developed, mainly for biomagnetic multichannel systems. This chapter gives a description and comparison of the most important ones: concepts using multiple SQUIDs, SQUIDs with additional positive feedback, relaxation oscillation SQUIDs, and digital SQUIDs. Both the noise and the dynamic behavior are discussed, and a simple model for the achievable speed of a directly-coupled feedback loop without flux modulation is presented, which allows one to estimate the dynamic merits of the various SQUID concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, J., Goubau, W.M., and Ketchen, M.B. (1976) Tunnel junction dc SQUID: fabrication, operation, and performance, J. Low Temp. Phys. 25, 99–144.

    Article  ADS  Google Scholar 

  2. Drung, D. (1991) do SQUID systems overview, Supercond. Sci. Technol. 4, 377–385.

    Article  ADS  Google Scholar 

  3. Drung, D. (1994) Recent low temperature SQUID developments, JEFF Trans. AppL Supercond 4, 121–127.

    Article  Google Scholar 

  4. Thomasson, S.L. and Gould, C.M. (1995) 1 MHz bandwidth true NMR SQUID amplifier, J. Low Temp. Phys. 101, 243–248.

    Article  ADS  Google Scholar 

  5. Polushkin, V., Drung, D., and Koch, H. (1994) A broadband picovoltmeter based on the direct current superconducting quantum interference device, Rev. Sci. Instrum. 65, 3005–3011.

    Article  ADS  Google Scholar 

  6. Wellstood, F., Heiden, C., and Clarke, J. (1984) Integrated dc SQUID magnetometer with a high slew rate, Rev. Sci. Instrun. 55, 952–957.

    Article  ADS  Google Scholar 

  7. Koch, R.H., Rozen, J.R., Sun, J.Z., and Gallagher, W.J. (1993) Three SQUID gradiometer, Appl. Phys. Lett. 63,403–405.

    Article  ADS  Google Scholar 

  8. Ketchen, M.B. (1987) Integrated thin-film dc SQUID sensors, JEFF Trans. Magn. 23, 1650–1657.

    Article  ADS  Google Scholar 

  9. Ryhänen, T., Seppä, H., Ilmoniemi, R., and Knuutila, J. (1989) SQUID magnetometers for low-frequency applications,.1. Low Temp. Phys. 76, 287–386.

    Article  Google Scholar 

  10. Clarke, J. (1993) SQUIDs: theory and practice, in H. Weinstock and R.W. Ralston (eds.), The New Superconducting Electronics, Kluwer Acadamic Publishers, Dordrecht, pp. 123–180.

    Chapter  Google Scholar 

  11. Falco, C.M., Parker, W.H., Trullinger, S.E., and Hansma, P.K. (1974) Effect of thermal noise on current-voltage characteristics of Josephson junctions, Phys. Rev. B 10, 1865–1873.

    Article  ADS  Google Scholar 

  12. Voss, R.F. (1981) Noise characteristics of an ideal shunted Josephson junction, J. Low Temp. Phys. 42,151–163.

    Article  ADS  Google Scholar 

  13. Van Duzer, T and Turner, C.W. (1981) Principles of Superconductive Devices and Circuits,Elsevier, New York.

    Google Scholar 

  14. Tesche, C.D. and Clarke, J. (1977) dc SQUID: noise and optimization, J. Low Temp. Phys. 27, 301–331.

    Article  ADS  Google Scholar 

  15. Bruines, J.J.P., de Waal, V.J., and Mooij, J.E. (1982) Comment on: “dc SQUID: noise and optimization” by Tesche and Clarke, J. Low Temp. Phys. 46, 383–386.

    Article  ADS  Google Scholar 

  16. De Waal, V.J., Schrijner, P., and Llurba, R. (1982) Simulation and optimization of a dc SQUID with finite capacitance, J. Low Temp. Phys. 54,215–232.

    Article  Google Scholar 

  17. Koelle, D., Miklich, A.H., Ludwig, F., Dantsker, E., Nemeth, D.T., and Clarke, J. (1993) do SQUID magnetometers from single layers of YBa2Cu3O7-x, Appl. Phys. Lett. 63, 2271–2273.

    Article  ADS  Google Scholar 

  18. Enpuku, K., Shimomura, Y., and Kisu, T. (1993) Effect of thermal noise on the characteristics of a high T superconducting quantum interference device, J. Appl. Phys. 73, 7929–7934.

    Article  ADS  Google Scholar 

  19. Motchenbacher C.D. and Fitchen, F.C. (1973) Low Noise Electronic Design, Wiley, New York.

    Google Scholar 

  20. Enpuku, K., Tokita, G., Maruo, T., and Minotani, T. (1995) Parameter dependencies of characteristics of a high-Tc dc superconducting quantum interference device, J. Appl. Phys. 78, 3498–3503.

    Article  ADS  Google Scholar 

  21. Foglietti, V., Koch, R.H., Sun, J.Z., Laibowitz, R.B., and Gallagher, W.J. (1995) Characterizing, modeling, and optimizing high-Tc superconducting quantum interference devices, J. Appl. Phys. 77, 378–381.

    Article  ADS  Google Scholar 

  22. Sun, J.Z., Yu-Jahnes, L.S., Foglietti, V., Koch, R.H., and Gallagher, W.J. (1995) Properties of YBaCuO thin film single-level dc SQUIDs fabricated using step-edge junctions, IEEE Trans. Appl. Supercod. 5, 2107–2111.

    Article  Google Scholar 

  23. Keene, M.N., Satchell, J.S., Goodyear, S.W., Humphreys, R.G., Edwards, J.A., Chew, N.G., and Lander, K. (1995) Low noise HTS gradiometers and magnetometers constructed from YBa2Cu3O7_x /PrBa2Cu3O7-y thin films, IEEE Trans. Appl. Supencond. 5, 2923–2926.

    Article  Google Scholar 

  24. Kleiner, R. (1995) unpublished.

    Google Scholar 

  25. Drung, D. (1992) Investigation of a double-loop dc SQUID magnetometer with additional positive feedback, in H. Koch and H. Labbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, pp. 351–356.

    Chapter  Google Scholar 

  26. Koch, R.H., Foglietti, V., Rozen, J.R., Stawiasz, K.G., Ketchen, M.B., Lathrop, D.K., Sun, J.Z., and Gallagher, W.J. (1994) Effects of radio frequency radiation on the do SQUID, Appt. Phys. Lett. 65, 100–102.

    Article  ADS  Google Scholar 

  27. Koch, R.H., Clarke, J., Goubau, W.M., Martinis, J.M., Pegrum, C.M., and Van Harlingen, D.J. (1983) Flicker (1/t) noise in tunnel junction do SQUIDs, J. Low Temp. Phys. 51, 207–224.

    Article  ADS  Google Scholar 

  28. Drung, D., Crocoll, E., Herwig, R., Neuhaus, M., and Jutzi, W. (1989) Measured performance parameters of gradiometers with digital output, IEEE Trans. Magn. 25, 1034–1037.

    Article  ADS  Google Scholar 

  29. Drung, D. (1995) Low-frequency noise in low-Tc multiloop magnetometers with additional positive feedback, Appl. Phys. Left. 67, 1474–1476.

    Article  ADS  Google Scholar 

  30. Drung, D., Matz, H., and Koch,H. (1995) A 5-MHz bandwidth SQUID magnetometer with additional positive feedback, Rev. Sci. Instrum. 66, 3008–3015.

    Article  ADS  Google Scholar 

  31. Drung, D., Jurthe, S., Knappe, S., Matz, H., and Peters, M. (1995) unpublished.

    Google Scholar 

  32. Quantum Magnetics, 11558 Sorrento Valley Road, San Diego, CA 92121–1131.

    Google Scholar 

  33. Giffard, R.P. (1980) Fundamentals for SQUID applications, in H.D. Hahlbohm and H. Ltibbig (eds.), Superconducting Quantum Interference Devices and their Applications, Walter de Gruyter, Berlin, pp. 445–471.

    Google Scholar 

  34. Drung, D. (1988) Sensor and A/D-Wandlerstufe auf einem Chip zur Präzisionsmessung von Magnetfeldgradienten nut Josephson-Kontakten, Ph.D. thesis, University of Karlsruhe.

    Google Scholar 

  35. Seppä, H. and Sipola, H. (1990) A high open-loop gain controller, Rev. Sci. Instrum. 61, pp. 2449–2451.

    Article  ADS  Google Scholar 

  36. Welty, R.P. and Martinis, J.M. (1993) Two-stage integrated SQUID amplifier with series array output, IEEE Trans. Appt. Supercond. 3,2605–2608.

    Article  ADS  Google Scholar 

  37. Radparvar, M. and Rylov, S. (1995) An integrated digital SQUID magnetometer with high sensitivity input, IEEE Trans. Appl. Supercond. 5, 2142–2145.

    Article  Google Scholar 

  38. Seppa, H., Ahonen, A., Knuutila, J., Simola, J., and Vilkman, V. (1991) dc SQUID electronics based on adaptive positive feedback: experiments, IEEE Trans. Magn. 27, 2488–2490.

    Article  ADS  Google Scholar 

  39. Seppa, H. (1992) dc SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller, in H. Koch and H. Labbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, pp. 346–350.

    Chapter  Google Scholar 

  40. Drung, D. and Koch, H. (1993) An electronic second-order gradiometer for biomagnetic applications in clinical shielded rooms, IEEE Trans. Appt Supercond. 3, 2594–2597.

    Article  Google Scholar 

  41. Drung, D. (1995) The PTB 83-SQUID system for biomagnetic applications in a clinic, IEEE Trans. Appl. Supercond 5, 2112–2117.

    Article  Google Scholar 

  42. Ryhänen, T., Seppä, H., Cantor, R., Drung, D., Koch, H., and Veldhuis, D. (1992) Noise studies of uncoupled dc SQUIDs, in H. Koch and H. Lnbbig (eds.), Superconducting Devices and Their Applications, Springer-Verlag, Berlin, pp. 321–325.

    Google Scholar 

  43. Seppä, H., Kiviranta, M., Satrapinski, A., G§Ôönberg, L., Salmi, J., and Suni, I. (1993) A coupled dc SQUID with low ltf noise, IEEE Trans. Appt Supercond 3, 1816–1819.

    Article  Google Scholar 

  44. Drung, D., Dantsker, E., Ludwig, F., Koch, H., Kleiner, R., Clarke, J., Krey, S., Reimer, D., David, B., and Doessel, O. (1966) Low noiseYBa2Cu3O7-x SQUID magnetometers operated with additional positive feedback, Appl. Phys. Lett. 68, 1856–1858.

    Article  ADS  Google Scholar 

  45. Drung, D., Ludwig, F., Müller, W., Steinhoff U., Trahms, L., Koch, H., Shen, Y.Q., Jensen, M.B., Vase, P., Holst, T., Freltoft, T., and Curio, G. (1996) Integrated YBa2Cu3O7-x magnetometers for biomagnetic measurements, Appt Phys. Lett. 68, 1421–1423.

    Article  ADS  Google Scholar 

  46. ter Brake, H.J.M., Fleuren, F.H., Ulfman, J.A., and Flokstra, J. (1986) Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers, Cryogencs 26, 667–670.

    Article  Google Scholar 

  47. Radparvar, M. (1994) A wide dynamic range single-chip SQUID magnetometer, IEEE. Trans. Appl. Supercond. 4, 87–91.

    Article  ADS  Google Scholar 

  48. Shinada, K., Munaka, T., Ueda, M., Fujiyama, Y., Nagamachi, S., and Yamada, Y. (1995) Double washer do SQUIDs with short weak link junctions, in Extended Abstracts of 5th International Superconductive Electronics Conference,Nagoya, Japan, Sept. 1995, pp. 364–365.

    Google Scholar 

  49. Gershenson, M. (1991) Design of a hysteretic SQUID as the readout for a dc SQUID, IEEE Trans. Magn. 27, 2910–2912.

    Article  ADS  Google Scholar 

  50. Koshelets, V.P., Matlashov, A.N., Serpuchenko, I.L., Filippenko, L.V., and Zhuravlev, Yu.E. (1989) dc SQUID preamplifier for dc SQUID magnetometer, IEEE Trans. Magn. 25, 1182–1185.

    Article  ADS  Google Scholar 

  51. Foglietti, V. (1991) Double dc SQUID for flux-locked-loop operation, AppL Phys. Lett. 59, 476–478.

    Article  ADS  Google Scholar 

  52. Maslennikov, Yu.V., Beljaev, A.V., Snigirev, O.V., Kaplunenko, O.V., and Mezzena, R. (1995) A double de SQUID based magnetometer, IEEE Trans. Appl. Supercond. 5, 3241–3243.

    Article  Google Scholar 

  53. Ketchen, M.B. and Tsuei, C.C. (1980) Low &equency noise in small-area tunnel junction dc SQUIDs, in H.D. Hahlbohm and H. Labbig (eds.), Superconducting Quantum Interference Devices and their Applications, Walter de Gruyter, Berlin, pp. 227–235.

    Google Scholar 

  54. Wellstood, F.C., Urbina, C., and Clarke, J. (1987) Low-frequency noise in dc superconducting quantum interference devices below 1 K, Appi. Phys. Lett. 50, 772–774.

    Article  ADS  Google Scholar 

  55. Foglietti, V., Giannini, M.E., and Petrocco, G. (1991) A double dc SQUID device for flux locked loop operation, IF.FF Trans. Magn. 27, 2989–2992.

    Article  ADS  Google Scholar 

  56. Welty, R.P. and Martinis, J.M. (1991) A series array of do SQUIDs, IEEE Trans. Magn. 27, 2924–2926.

    Article  ADS  Google Scholar 

  57. Stawiasz, K.G. and Ketchen, M.B. (1993) Noise measurements of series SQUID arrays, IEEE Trans. AppL Supercond 3, 1808–1811.

    Article  Google Scholar 

  58. HYPRES, Inc., 175 Clearbrook Road, Elmsford, NY 10523.

    Google Scholar 

  59. Takeda, E. and Nishino, T. (1995) Design of SQUID sensor having SQUID amplifier, in Extended Abstracts of 5th International Superconductive Electronics Conference, Nagoya, Japan, Sept. 1995, pp. 361–363.

    Google Scholar 

  60. Drung, D., Cantor, R., Peters, M., Scheer, H.J., and Koch, H. (1990) Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics, AppL Phys. Lett. 57, 406–408.

    Article  ADS  Google Scholar 

  61. Drung, D. and Koch, H. (1994) An integrated dc SQUID magnetometer with variable additional positive feedback, Supercond Sci. TechnoL 7, 242–245.

    Article  ADS  Google Scholar 

  62. Kiviranta, M. and Seppä, H. (1995) dc SQUID electronics based on the noise cancellation scheme,IEEE Trans. AppL Supercond 5, 2146–2148.

    Article  Google Scholar 

  63. Ukhansky, N.N., Gudoshnikov, S.A., Vengrus, I.I., and Snigirev, O.V. (1995) Low noise liquidnitrogen-cooled preamplifier for a high-Tc SQUID, in Extended Abstracts of 5th International Superconductive Electronics Conference,Nagoya, Japan, Sept. 1995, pp. 346–348.

    Google Scholar 

  64. Takada, Y., Tsukada, K., and Adachi, A. (1995) A high reliable SQUID gradiometer with controllable additional positive feedback, in Extended Abstracts of 5th International Superconductive Electronics Conference, Nagoya, Japan, Sept. 1995, pp. 366–367.

    Google Scholar 

  65. Clarke, J. (1994) Low frequency quadrupole resonance with SQUID amplifiers, Z. Naturforsch. 49a, 3–13.

    Google Scholar 

  66. RyhAnen, T., Cantor, R., Drung, D., and Koch, H. (1991) Practical low-noise integrated dc superconducting quantum interference device magnetometer with additional positive feedback, Appl. Phys. Lett. 59,228–230.

    Article  ADS  Google Scholar 

  67. Kazami, K., Takada, Y., Uehara, G., Matsuda, N., and Kado, H. (1994) Evaluation of Drung-type magnetometers for multi-channel systems, Supercomi Sci. Technol. 7, 249–252.

    Article  ADS  Google Scholar 

  68. Drung, D., Knappe, S., and Koch, H. (1995) Theory for the multiloop dc superconducting quantum interference device magnetometer and experimental verification, J. Appl. Phys. 77, 4088–4098.

    Article  ADS  Google Scholar 

  69. Koch, H., Cantor, R., Drung, D., Erné, S.N., Matthies, K.P., Peters, M., Ryhänen, T., Scheer, H.J., and Hahlbohm, H.D. (1991) A 37 channel dc SQUID magnetometer system, IEEE, Trans. Magn. 27, 2793–2796.

    Article  ADS  Google Scholar 

  70. Matz, H. and Drung, D. (1995) unpublished.

    Google Scholar 

  71. Simmonds, M. B. and Giffard, R. P. (1983) Apparatus for reducing low frequency noise in dc biased SQUIDs, U. S. Patent No. 4 389 612.

    Google Scholar 

  72. Foglietti, V., Gallagher, W.J., Ketchen, M.B., Kleinsasser, A.W., Koch, R.H., Raider, S.I., and Sandstrom, R.L. (1986) Low-frequency noise in low 1/f noise do SQUIDs, Appl. Phys. Lett. 49, 1393–1395.

    Article  ADS  Google Scholar 

  73. Dössel, O., David, B., Fuchs, M., Kullmann, W.H., and Lüdeke, K.-M. (1991) A modular low noise 7-channel SQUID-magnetometer, IEEE, Trans. Magn. 27, 2797–2800.

    Article  ADS  Google Scholar 

  74. Savo, B., Wellstood, F.C., and Clarke, J. (1987) Low-frequency excess noise in Nb-Al2O3-Nb Josephson tunnel junctions, Appl. Phys. Lett. 50, 1757–1759.

    Article  ADS  Google Scholar 

  75. Drung, D., Cantor, R., Peters, M., Ryhänen, T., and Koch, H. (1991) Integrated dc SQUID magnetometer with high dV/dB, IEEE Trans. Magn. 27, 3001–3004.

    Article  ADS  Google Scholar 

  76. Zappe, H.H. (1973) Minimum current and related topics in Josephson tunnel junction devices, J. Appl. Phys. 44, 1371–1377

    Article  ADS  Google Scholar 

  77. Adelerhof D.J., Nijstad, H., Flokstra, J., and Rogalla, H. (1994) (Double) relaxation oscillation SQUIDs with high flux-to-voltage transfer: Simulations and experiments, J. Appl. Phys. 76, 3875–3886.

    Article  ADS  Google Scholar 

  78. Vernon, F.L. and Pedersen, R.P. (1968) Relaxation oscillations in Josephson junctions, J. Appl. Phys. 39, 2661–2664.

    Article  ADS  Google Scholar 

  79. Gutmann, P. (1979) dc SQUID with high energy resolution, Electr. Lett. 15, 372–373.

    Article  Google Scholar 

  80. Gudoshnikov, S.A., Maslennikov, Yu.V., Semenov, V.K., Snigirev, O.V., and Vasiliev, A.V. (1989) Relaxation-oscillation-driven dc SQUIDs, IEEE Trans. Magn. 25, 1178–1181.

    Article  ADS  Google Scholar 

  81. Mock, M. and Heiden, C. (1989) Simple do SQUID system based on a frequency modulated relaxation oscillator, IEEE Trans. Magn. 25, 1151–1153.

    Article  ADS  Google Scholar 

  82. Adelerhof D.J., Kawai, J., Uehara, G., and Kado, H. (1995) High sensitivity double relaxation oscillation superconducting quantum interference devices with large transfer from flux to voltage, Rev. Sci. Instrum. 66,2631–2637.

    Article  ADS  Google Scholar 

  83. Drung, D., Crocoll, E., Herwig, R., Knüttel, A., Neuhaus, M., and Jutzi, W. (1987) Experimental gradiometer with a digital feedback loop, in Extended Abstracts of 1st International Superconductive Electronics Conference,Tokyo, Japan, Aug. 1987, pp. 21–24.

    Google Scholar 

  84. Fujimaki, N., Gotoh, K., Imamura, T., and Hasuo, S. (1992) Thermal-noise-limited performance in single-chip superconducting quantum interference devices, J. Appl. Phys. 71, 6182–6188.

    Article  ADS  Google Scholar 

  85. Gudoshnikov, S.A., Kaplunenko, O.V., Maslennikov, Yu.V., and Snigirev, O.V. (1991) Noise in relaxation-oscillation-driven dc SQUIDS, JEFF Trans. Magn. 27, 2439–2441.

    Article  ADS  Google Scholar 

  86. Adelerhoi D.J., van Duuren, M.J., Flokstra, J., Rogalla, H., Kawai, J., and Kado, H. (1995) High sensitivity magnetic flux sensors with direct voltage readout: Double relaxation oscillation SQUIDs, IEEE Trans. Appl. Supercond. 5,2160–2163.

    Article  Google Scholar 

  87. Mtück, M., Rogalla, H., and Heiden, C. (1988) A frequency-modulated read-out system for dc SQUIDs, Appl. Phys. A 47, 285–289.

    Article  ADS  Google Scholar 

  88. Uehara, G., Morooka, T., Kawai, J., Mizutani, N., and Kado, H. (1993) Characteristics of the relaxation oscillation SQUID with tunnel junctions, IEEE Trans. Appl. Supercond. 3, 1866–1869.

    Article  Google Scholar 

  89. Lee, Y.H., Kim, J.M., Kwon, H.C., Park, Y.K., Park, J.C., van Duuren, M.J., Adelerhot, D.J., Flokstra, J., and Rogalla, H., (1995) 3-channel double relaxation oscillation SQUID magnetometer system with simple readout electronics, IEEE Trans. Appl. Supercond 5, 2156–2159.

    Article  Google Scholar 

  90. van Duuren, M.J., Adelerhof D.J., Lee, Y.H., Flokstra, J., Rogalla, H., Kawai, J., and Kado, H. (1995) DROS magnetometers operated in a multi-channel system, in D. Dew-Hughes (ed.), Applied Superconductivity 1995, IOP Publishing, Bristol, pp. 1507–1510.

    Google Scholar 

  91. Lee, Y.H., Kwon, H.C., Kim, J.M., Park, Y.K., and Park, J.C. (1995) Integrated planar gradiometer based on double relaxation oscillation SQUID, in Extended Abstracts of 5th International Superconductive Electronics Conference, Nagoya, Japan, Sept. 1995, pp. 178–180.

    Google Scholar 

  92. Adelerhof D.J., Wichers, H., Brons, C., van Duuren, M., Vekihuis, D., Flokstra, J., and Rogalla, H. (1995) Direct coupled multiloop DROS magnetometer with direct voltage readout, in Extended Abstracts of 5th International Superconductive Electronics Conference, Nagoya, Japan, Sept. 1995, pp. 371–373.

    Google Scholar 

  93. Vrba, J., Betts, K., Burbank, M., Cheung, T., Fife, A.A., Haid, G., Kubik, P.R., Lee, S., McCubbin, J., McKay, J., Mckenzie, D., Spear, P., Taylor, B., Tillotson, M., Cheyne, D., and Weinberg, H. (1993) Whole cortex, 64 channel SQUID biomagnetometer system, IEEE Trans. Appt. Supercond. 3, 1878–1882.

    Article  Google Scholar 

  94. Zimmermann, E., Brandenburg, G., Clemens, U., and Hailing, H. (1995) Kompensationsregelung f ür extrem nichtlinearen Sensor mit digitalem Signalprozessor, in Proceedings ofDSP Deutschland 95, MOnchen, Germany, Sept. 1995, pp. 133–142.

    Google Scholar 

  95. Sarwinski, R.E. (1977) Superconducting instruments, Cryogenics 12, 671–679.

    Article  Google Scholar 

  96. Drung, D. (1986) Digital feedback loops for dc SQUIDs, Cryogenics 26, 623–627.

    Article  Google Scholar 

  97. Matz, H., Drung, D., Crocoll, E., Herwig, R., Kritmer, G., Neuhaus, M., and Jutzi, W. (1990) High slew rate gradiometer prototype with digital feedback loop of variable step size, Cryogenics 30, 330–334.

    Article  Google Scholar 

  98. Matz, H., Drung, D., Crocoll, E., Herwig, R., Krämer, G., Neuhaus, M., and Jutzi, W. (1991) Integrated magnetometer with a digital output, IEEE Trans. Magn. 27, 2979–2982.

    Article  ADS  Google Scholar 

  99. Eschner, W., Fath, U., Hbfer, G., Hundhausen, R., Kratz, H., Ludwig, W., Rothmund, W., and Wolker, M. (1993) Magnetic field sensors with digital feedback readout, IEEE Trans. Appl. Supercond. 3, 1824–1827.

    Article  Google Scholar 

  100. Matz, H. (1993) Impact of noise on linearity of SQUID feedback loops at high slew rate, IEEE Trans. Appt. Supercond. 3, 3054–3058.

    Article  Google Scholar 

  101. Igarashi, Y., Goto, T., Hayashi, T., Fujimaki, N., kawabe, K., Shimura, T., and Hayashi, H. (1989)Improved SQUID magnetometer with an external feedback circuit, in S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani (eds.), Advances in Biomagnetism, Plenum Press, New York, pp. 645–648.

    Chapter  Google Scholar 

  102. Tsang, W.-T. and Van Duzer, T. (1975) dc analysis of parallel arrays of two and three Josephson junctions, J. Appl. Phys. 46,4573–4580.

    Article  ADS  Google Scholar 

  103. Peterson, R.L. and Hamilton, C.A. (1979) Analysis of threshold curves for superconducting interferometers, J. Appt. Phys. 50, 8135–8142.

    Article  ADS  Google Scholar 

  104. Wunsch, J., Jutzi, W., and Crocoll, E. (1982) Parameter evaluation of asymmetric interferometers with two Josephson junctions, IEEE, Trans. Magn. 18, 735–737.

    Article  ADS  Google Scholar 

  105. Drung, D. (1996) unpublished.

    Google Scholar 

  106. Fujimaki, N., Tamura, H., Imamura, T., and Hasuo, S. (1989) Thermal noise-limited sensitivity of the pulse-biased SQUID magnetometer, J. Appl. Phys. 65, 1626–1630.

    Article  ADS  Google Scholar 

  107. Fujimaki, N., Tamura, H., Imamura, T., and Hasuo, S. (1988) A single-chip SQUID magnetometer, IEEE Trans. Electron Devices 35,2412–2418.

    Article  ADS  Google Scholar 

  108. Gotoh, K., Fujimaki, N., Imamura, T., and Hasuo, S. (1993) 8-channel array of single-chip SQUIDs connection to Josephson multiplexer, IFFE Trans. Appl. Supercond 3, 2601–2604.

    Article  Google Scholar 

  109. Rylov, S.V. (1991) Analysis of high-performance counter-type A/D converters using RSFQ logic/ memory elements, IEEE Trans. Magn. 27,2431–2434.

    Article  ADS  Google Scholar 

  110. Likharev, K.K. and Semenov, V.K. (1991) RSFQ logic/memory family: A new Josephson junction technology for sub-THz-clock-frequency digital systems, JEFF Trans. Appl. Supercond. 1, 3–28.

    Article  ADS  Google Scholar 

  111. Yuh, P.-F. and Rylov, S.V. (1995) An experimental digital SQUID with large dynamic range and low noise, IEEE Trans. Appl. Supercond. 5, 2129–2132.

    Article  Google Scholar 

  112. Sripad, A.B. and Synder, D.L. (1977) A necessary and sufficient condition for quantization errors to be uniform and white, IEEE Trans. Acoust., Speech, Signal Processing 25, 442–448.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drung, D. (1996). Advanced Squid Read-Out Electronics. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics