Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

Alternative and/or complementary information are provided by functional imaging techniques. Physiological, biochemical, pharmacological variables can be assessed by positron emission tomography (PET) and single photon emission tomography (SPET). Recent technological advances, in particular the implementation of fast acquisition sequences, such as echo-planar technique, allow functional investigation by Magnetic Resonance Imaging (fMRI). For each modality the physical principles and research/clinical applications are presented, relative merits and limitations in assessing functional activity in the brain are discussed in relation to magneto-encephalography (MEG). The combined use of the different information provided by multi-modal bioimaging and bio-signal methods is enhanced by registration techniques, allowing for a spatial correspondence of the multi-modal information. Different approaches to the registration problem are described. Integration of functional imaging techniques and MEG provides an accurate description of cerebral functions with high spatial and temporal resolution, this representing a powerful probe for brain investigation both in basic and clinical neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Young, I.R. (1994) Review of modalities with potential future in radiology, Radiology 192, 307–317.

    Google Scholar 

  2. Raichle, M.E. (1994) Visualizing the mind, Scientific American, April, 36–44.

    Google Scholar 

  3. S. Sato (ed.) (1990) Advances in Neurology: Magnetoeпcephalogrаphy.Vol.54, Raven Press, New York:

    Google Scholar 

  4. Phelps, M.E. and Mazziotta, J.C. (1985) Positron Emission Tomography: Human Brain Function and Biochemistry, Science 228, 799–809.

    Article  ADS  Google Scholar 

  5. Huang, S.C. and Phelps, M.E. (1986) Principles of tracer kinetic modeling in positron emission tomography and autoradiography, in M. Phelps, J. Mazziotta, and H. Schelbeг (eds), Positron emission tomography and autoradiography: principles and application for the brain and heart,Raven Press, New York, pp. 287–346.

    Google Scholar 

  6. Frackowiak, R.S.J., Lenzi, G.L., Jones, T. and Heather, J.D. (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 50 and positron emission tomography. Theory, procedure and normal values, J.Comput Assist.Tomogr. 4, 727–736.

    Article  Google Scholar 

  7. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M. Ido, T., Casella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P. and Sokoloff, L. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res. 44, 127–137.

    Article  Google Scholar 

  8. Hoffman, E.J. and Phelps, M.E. (1986) Positron emission tomography principles and quantitation, in M. Phelps, J. Mazziotta, and H. Schelbert (eds.), Positron emission tomography and autoradiography: principles and application for the brain and heart, Raven Press, New York, pp. 237–286.

    Google Scholar 

  9. Brooks, R. and Di Chiro, G. (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging, Phys.Med Biol. 21, 689–732.

    Article  Google Scholar 

  10. Koeppe, R.A. and Hutchins, G.D. (1992) Instrumentation for positron emission tomography: tomographs and data processing and display systems, Semin Nucl.Med. 22, 162–181.

    Article  Google Scholar 

  11. Wiehenard, K., Dahlbom, M., Eriksson, L., Michel, C., Bruckbauer, T., Pietrzyk, U. and Heiss W-D. (1994) The ECAT EXACT HR: performance of a new high resolution positron scanner, J.Comput Assist.Tomogr. 18, 110–118.

    Article  Google Scholar 

  12. DeGrado, T.R., Turkington, T.G., Williams, J.J., Steams, C.W., Hoffman, J.M. and Coleman R.E. (1994) Performance characteristics of a whole-body PET scanner, J.Nucl.Med. 35, 1398–1406.

    Google Scholar 

  13. Spinks, T.J., Jones, Т., Bailey, D.L., Townsend, D.W., Grootoonk, S., Bloomfield, P.M., Gilardi, M.C., Casey, M.E., Sipe, B. and Reed, J. (1992) Physical performance of a positron tomograph for brain imaging with retractable septa, Phys.Med.Biol. 37, 1637–1655.

    Article  Google Scholar 

  14. Townsend, D.W., Geissbuhler, A., Defnse, M., Hoffman, E.J., Spinks, T.J., Bailey, D.L., Gilardi, M.C. and Jones, Т. (1991) Fully three dimensional reconstruction for a PET camera with retractable septa, IEEE Trans. Med. Imag. 10, 505–512.

    Article  Google Scholar 

  15. Bailey, D., Jones, T., Spinks, T.J., Gilardi, M.C. and Townsend, D.W. (1991) Noise equivalent count measurements in a Neuro-PET Scanner with retractable septa, IEEE Trans. Med. Imag. 10, 256–260.

    Article  Google Scholar 

  16. Cherry, S.R., Dahlbom, M. and Hoffman, E.J. (1991) 3D PET using conventional multislice tomograph without septa, J.Assist.Comput. Tomogr. 15, 655–668.

    Article  Google Scholar 

  17. Cherry, S.R., Woods, R.P., Hoffman, E.J. and Mazziotta, J.C. (1993) Improved detection of focal cerebral blood flow changes using three-dimensional positron emission tomography, J.Cereb.Blood Flow Metab. 13, 630–638.

    Article  Google Scholar 

  18. Rosenthal, M.S., Cullom, J., Hawkins, W., Moore, S.C., Tsui, B.M.W. and Yester, M. (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council, J.Nucl.Med. 36, 1489–1513.

    Google Scholar 

  19. Kouńs, K., Jarmitt, P.H., Costa, D.C., Ell, P.J. (1992) Physical assessment of the GE/CGR Neurocam and comparison with a single rotating gamma-camera, Eur.JNucl.Med. 19, 236–242.

    Google Scholar 

  20. Genna, S. and Smith, A.P. (1988) The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT, IEEE Trans.Nucl.Sci. NS-35, 654–658.

    Article  ADS  Google Scholar 

  21. Bailey, D.L., Zito, F., Gilardi, M.C., Savi, A.R., Fazio, F. and Jones, Т. (1994) Performance comparison of a state of the art neuro-SPET scanner and a dedicated neuro-PET scanner, EurJ.Nucl.Med. 21, 381–387.

    Google Scholar 

  22. Leichner, P.K., Morgan, H.T., Holdeman, K.P., Valentino, F., Lexa, R., Kelly, R.F., Hawkins, W.G. and Dalrymple, G.V. (1995) SPECT imaging of Fluоriпе-18, J.Nucl.Med. 36, 1472–1475.

    Google Scholar 

  23. Ell, P.J. (1992) Mapping cerebral blood flow, J.Nucl.Med. 33, 1843–1845.

    Google Scholar 

  24. Messa, C., Fazio, F., Costa, D.C. and Ell, P.J. (1995) Clinical brain radionuclide imaging studies, Semin.Nucl.Med. 25, 111–143.

    Article  Google Scholar 

  25. Jarenwattananon, A., Khandji, A. and Bruit, J.C.M. (1988) Diagnostic Neuroimaging in Stroke, in W.H. Theodore (ed.), Clinical Neuroimaging,Alan R. Liss inc., New York, pp. 11–47.

    Google Scholar 

  26. Bogousslawsky, J., Delaloye-Bishof, A., Regli, F. and Delaloye, B. (1990) Prolonged hypoperfusion and early stroke after transient ischemic attack, Stroke 21, 40–46.

    Article  Google Scholar 

  27. Giubilei, F., Lenzi, G.L., Di Piero, V., Pozzili, C., Pantano, P., Bastianello, S., Argentino, C. and Fieschi, C. (1990) Predictive value of brain perfusion single-photon emission computed tomography in acute ischemic stroke, Stroke 21, 895–900.

    Article  Google Scholar 

  28. Pantano, P., Baron, J.C., Samson, Y., Bousser, M.G., Derouesné, C. and Comar, D. (1986) Crossed cerebellar diaschisis: further studies, Brain 109, 677–694.

    Article  Google Scholar 

  29. Baldy-Moulder, M., Lassen, N.A., Engel, J., Askienazy S. (eds.) (1989) Focal epilepsy; clinical use of emission tomography, John Libbey, London, Paris, Rome.

    Google Scholar 

  30. Theodore W.H. (1988) Epilepsy, in W.H. Theodore (ed.), Clinical Neuroimaging, Alan R. Liss inc., New York, pp. 183–210.

    Google Scholar 

  31. Rowe, C.C., Berkovic, F., Benjamin S., St., Austin, M., Mc Kay, J.W., Kalnins, R.M. and Bladin, P. (1989) Localization of epileptic foci with postictal single photon emission tomography, Ann.Neurol. 26, 660–668.

    Article  Google Scholar 

  32. Alavi, A., Dann, R., Chawluk, J., Alavi, J., Kushner, M. and Reivich, M. (1986) Positron emission tomography imaging of regional cerebral glucose metabolism, Semin. Nucl. Med. 16, 2–34.

    Article  Google Scholar 

  33. Haxby, J.V., Grady, C.L., Duara, R., Sclageter, N., Berg, G. and Rapoport, S.I. (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer’s type dementia, Arch.Neurol. 43, 882–885.

    Article  Google Scholar 

  34. Duara, R., Grady, C., Haxby, J., Sundaram, M., Cutler, N.R., Heston, L., Moore, A., Sclageter, N., Larson, S. and Rapoport, S.I. (1986) Positron emission tomography in Alzheimer’s disease, Neurology 36,879–887.

    Article  Google Scholar 

  35. Johnson, K.A., Mueller, S.T., Walsche, T.M., English, R.J. and Holman, B.L. (1987) Cerebral perfusion imaging in Alzheimer’s disease: use of single photon emission computed tomography and Iofetamine Hydrochloride I-123, Arch.Neurol. 44, 165–168.

    Article  Google Scholar 

  36. Perani, D., Di Piero, V., Vallar, G., Cappa, S., Messa, C., Bottini, G., Berti, A., Passafiume, D., Scarlato, G., Gemndini, P., Lenzi, G.L. and Fazio, F. (1988) Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer s disease, J.Nucl.Med. 29, 1507–1514.

    Google Scholar 

  37. Burns, A., Philpot, M.P., Costa, D.C., Ell, P.J. and Levy, R. (1989) The investigation of Alzheimer’s disease with single photon emission tomography, J.Neurol.Neurosur.Psych. 52, 248–253.

    Article  Google Scholar 

  38. Messa, C., Perani, D., Lucignani, G., Zenorini, A., Zito, F., Rizzo, G., Grassi, F., DelSole, A., Franceschi, M., Gilardi, M.C. and Fazio, F. (1994) High-resolution Technetium-99m-НMРАO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18-FDG PET, J.Nucl.Med. 35, 210–216.

    Google Scholar 

  39. Di Chiro, G., De LaPaz, R.L., Brooks, R.A., Sokoloff, L., Kombith, P.L., Smith, B.H., Patronas, N.J., Kufta, C.V., Kessler, R.M., Johnson, G.S., Manning, R.G. and Wolf, A.P. (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography, Neurology 32, 1323–1329.

    Article  Google Scholar 

  40. Kim, K.T., Black, K.L., Marciano, D., Mazziotta, J.C., Guze, B.H., Grafton, S., Hawkins, R.A. and Becker, D.P. (1990) Thallium-201 SPECT imaging of brain tumours: methods and results, J.Nucl.Med. 31,965–969

    Google Scholar 

  41. Paganelli, G., Magnani, P., Zito, F., Villa, E., Stella, M., Lopalco, L., Siccardi, A.G. and Fazio, F. (1991) Antibody guided tumor detection in CEA positive patients using the avidin-biotin system, Cancer Res. 51, 5960–5966.

    Google Scholar 

  42. Brucke, T., Podreka, I., Angelberger, P., Wenger, S., Topitz, A., Kufferle, B., Muller, Ch. and Deecke, L. (1991) Dopamine D2 receptor imaging with SPECT: studies in dfferent neuropsychiatrie disorders, J.Cereb.Blood Flow Metab. 11, 220–228.

    Article  Google Scholar 

  43. StёcKliл, G. (1992) Tracers for metabolic imaging of brain and heart, Eur.J.Nucl.Med. 19, 527–551.

    Google Scholar 

  44. Lucignani, G., Moresco,R.M. and Fazio, F. (1989) PET-Based Neuropharmacology: State of the Art, Cerebrovasc.Brain Metab.Rev. 1, 271–287.

    Google Scholar 

  45. Young, A.B., Frey, K.A. and Agranoff, B.W. (1986) Receptor assays; in vitro and in vivo, in M. Phelps, J. Mazziotta, H. Schelber (eds.), Positron emission tomography and autoradiography: principles and application for the brain and heart, Raven Press, New York, pp. 73–111.

    Google Scholar 

  46. Frackowiak, R.S.J. and Friston, K.J. (1994) Functional neuroanatomy of the human brain: positron emission tomography - a new neuro anatomical technique, J.Anat. 184, 211–225.

    Google Scholar 

  47. Perani, D., Gilardi, M.C., Cappa, S.F. and Fazio, F. (1993) PET studies of cognitive functions: a review, J. Nucl. Med. Biol. 36, 324–336.

    Google Scholar 

  48. Pantano, P., Di Piero, V., Ricci, M., Fieschi, C., Bozzao, L. and Lenzi, G.L. (1992) Motor stimulation response by technetium-99m hexamethylpropylene amine oxime split-dose method and single photon emission tomography, Eur.J.Nucl.Med. 19, 939–945.

    Article  Google Scholar 

  49. George, M.S., Ring, H.A., Costa, D.C., Ell, P.J., Kouris, K. and Jarrit, P.H. (1991)Neuroactivation and neuroirnaging with SPECT, Springer-Verlag, Londra.

    Book  Google Scholar 

  50. Weiner, C., Ramsay, S.C., Wise, R.J.S., Friston K.J. and Frackowiack, R.S.J. (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction, Ann.Neurol. 33, 181–189.

    Article  Google Scholar 

  51. Chakeres, D.W. and Schmalbrock, P. (1992) Fundamentals of Magnetic Resonance Imaging,Williams & Wilkins, Baltimore.

    Google Scholar 

  52. Cohen, M.S. and Bookheimer, S.H. (1994) Localization of brain function using magnetic resonance imaging, TINS 17, 268–277.

    Google Scholar 

  53. Prichard, J.W. and Rosen, B.R. (1994) Functional study of the brain by NMR, J.Cereb.Blood Flow Metab. 14, 365–372.

    Article  Google Scholar 

  54. Belliveau, J.W., Kennedy, D.N., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., Vevea, J.M., Brady, T.J. and Rosen, B.R.(1991) Functional mapping of the human visual cortex by magnetic resonance imaging, Science 254, 716–719.

    Article  ADS  Google Scholar 

  55. Ogawa, S., Lee, T-M., Nayak, A.S. and Glynn, P. (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn.Reson.Med. 14, 68–78.

    Article  Google Scholar 

  56. Turner, R., Le Bihan, D., Moonen, C.T., Despres, D. and Frank, J. (1991) Echo-Planar Time course of MRI cat brain oxygenation changes, Magn.Reson.Med. 22, 159–166.

    Article  Google Scholar 

  57. Moseley, M.E. and Glover, G.H. (1995) Functional MR imaging: capabilities and limitations, in B.P. Drayer (ed.), Functional Neuroimaging, W.B. Saunders Company, Philadelphia, pp. 161–192.

    Google Scholar 

  58. Stehling, M.K., Turner, R. and Mansfield, P. (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second, Science 254, 43–54.

    Article  ADS  Google Scholar 

  59. Tumer, R., Jezzard, P., Wen, H., Kwong, K.K., Le Bihan, D., Zeffiro, Т. and Balaban, R.S. (1993) Functional mapping of the human visual cortex at 4 tesla and 1.5 tesla using deoxygenation contrast EPI. Magn. Resort. Med. 29, 281–283.

    Google Scholar 

  60. Latchaw, R.E., Ugurbil, K. and Hu, X. (1995) Functional MR imaging of perceptual and cognitive functions, in B.P. Drayer (ed.), Functional Neuroimaging, W.B. Saunders Company, Philadelphia, pp. 193–206.

    Google Scholar 

  61. Maisey, M.N., Hawkes, D.J. and Lukawiecki-Vydelingum, A.M. (1992) Synergistic imaging, EurJ.Nucl Med. 19, 1002–1005.

    Google Scholar 

  62. Hawkes, D.J., Hill, D.L.G., Lehmann, E.D., Robinson, G.P., Maisey, M.N. and Colchester, A.C.F. (1990) Preliminary work on the interpretation of SPECT images with the aid of registered MR images and an MR derived 3D neuro-anatomical atlas, in H. Hoene, S. M. Pizer and Н. Fuchs (eds.), 3D Imaging in Medicine,Nato ASI Series F 60 K, Springer-Verlag, Berlin, pp. 241–252.

    Google Scholar 

  63. Mandava, V.R., Fitzpatrick, J.M., Maurer, C.R.Jr, Maciunas, R.J. and Allen, G.S. (1992) Registration of multimodal volume head images via attached markers, in Proceedings of SPIE Medical Imaging VI: Image processing, SPIE Press, Bellingham W.A. 1652, pp. 271–282.

    Book  Google Scholar 

  64. Rizzo, G., Gilardi, M.C., Prinster, A., Lucignani, G., Bettinardi, V., Triulzi, F., Cardaioli, A., Cerutti, S. and Fazio, F. (1994) A bioimaging integration system implemented for neurological application, J.Nucl.Biol.Med. 38, 566–572.

    Google Scholar 

  65. Arun, K.S., Huang, T.S. and Blostein, S.D. (1987) Least-squares fitting of two 3D point sets, IEEE Trans.PAMI 9, 698–700.

    Article  Google Scholar 

  66. Henry, C.J., Collins, D.L. and Peters, T.M. (1991) Multimodality image integration for stereotactic surgical planning, Med.Phys. 18, 167–177.

    Article  Google Scholar 

  67. Peters, T.M., Clark, J.A., Olivier, A., Marchand, E.P, Mawko, G., Dieumegarde, M., Muresan, L.V. and Ethier, R. (1986) Integrated stereotaxic imaging with CT, MR imaging and digital subtraction angiography, Radiology 161, 821–826.

    Google Scholar 

  68. Zhang, J., Levesque, M.F., Wilson, C.L., Harper, R.M., Engel, J., Lufkin, R., Behnke, E.J. (1990) Multimodaiity imaging of brain structures for stereotactic surgery, Radiology 175, 435–441.

    Google Scholar 

  69. Bettinardi, V., Scаrdaoni, R., Gilardi, M.C., Rizzo, G., Perani, D., Paulesu, E., Striano, G., Triulzi, F. and Fazio, F. (1991) A new head-holder for patient positioning repositioning and fixation in PET, MR and CT devices, J.Comp. Assist. Tomogr. 15, 886–892.

    Article  Google Scholar 

  70. Schad, L.R., Boesecke, R., Schlegel, W., Hartmann, G.H., Sturm, V., Strauss, L.G. and Lorentz, W.J. (1987) Three-dimensional image correlation of CT, MR and PET studies in radiotherapy treatment planning of brain tumors, J.Comput. Assist.Tomogr. 11, 948–954.

    Article  Google Scholar 

  71. Evans, A.C., Marrett, S., Collins, L. and Peters, T.M. (1989) Anatomical-functional correlative analysis of the human brain using three dimensional imaging system, in R.H. Schneider, S.J. Dwyer III, R. Gilbert Jost (eds.), Proceedings of SPIE Medical Imaging III: Image processing, SPIE Press, Bellingham W.A. 1092, pp. 264–274.

    Chapter  Google Scholar 

  72. Pelizzari, C.A., Chen, G.T.Y., Spelbring, D.R., Weichselbraum, R.R. and Chen C.T. (1989) Accurate Three-Dimensional Registration of CT, PET and/or MR Images of the Brain, J.Comput. Assist. Tomogr. 13, 20–26.

    Article  Google Scholar 

  73. Steinmetz, H., Huang, Y., Seitz, R.J., Knorr, U., Schlang, G., Herzog, H., Haclander, T. and Freund, Н.(1992) Individual integration of positron emission tomography and high-resolution magnetic resonance imaging, J. Cereb. Blood Flow Metab. 12, 919–926.

    Article  Google Scholar 

  74. Pietrzyk, U., Herholz, K. and Heiss, W.D. (1990) Three-dimensional alignment of functional and morphological tomograms, J. Corp. Assist. Tomogr. 14,51–59.

    Article  Google Scholar 

  75. Alpert, N.M., Bradshaw, J.F., Kennedy, D. and Correia, J.A. (1990) The principal axes transformation - a method for image registration, J.Nucl. Med. 31,1717–1722.

    Google Scholar 

  76. Mangin, J.F., Frouin, V., Bloch I., Bendriem, B. and Lopez-Krahe, J. (1994) Fast non supervised 3D registration of PET and MR images of the brain, J.Cereb.Blood Flow Metab. 14, 749–762.

    Article  Google Scholar 

  77. Jiang, H., Holton, K. and Robb, R. (1992) Image registration of multimodality 3-D medical images by chamfer matching, in Proceedings of SPIS Biomedical image processing and three-dimensional microscopy, SPIE Press, Bellingham W.A. 1660, pp. 356–366.

    Google Scholar 

  78. Woods, R.P., Cherry, S.R. and Mazziotta, J.C. (1992) Rapid automated algorithm for aligning and reslicing PET images, J.Comput.Assist.Tomogr. 16, 620–633.

    Article  Google Scholar 

  79. Hoh, H.K., Dahlbom, M., Harris, G., Choi, Y., Hawkins, R.A., Phelps, M.E. and Maddahi, J. (1993) Automated iterative three-dimensional registration of positron emission tomography images, J.Nucl.Med. 34, 2009–2018.

    Google Scholar 

  80. Apicella, A., Kippenhan, J.S. and Nagel, J.H. (1988) Fast multimodality image matching, in R.H. Schneider, S.J. Dwyer III, R. Gilbert Jost (eds.), Proceedings of SPIE Medical Imaging III: Image processing, SPIE Press, Bellingham W.A. 1092, pp. 252–263.

    Chapter  Google Scholar 

  81. Woods, R.P., Mazziotta, J.C. and Cherry, S.R. (1993) MRI-PET registration with automated algorithm, J.Comput.Assist.Tomogr. 17, 536–546.

    Article  Google Scholar 

  82. Clarke, C.J.S., Ioannides, A.A. and Bolton, J.P.R. (1990) Localized and distributed source solutions for the biomagnetic inverse problem I., in S.J. Williamson et al. (eds.), Advances in Biomagnetism, Plenum, New York, pp. 587–590.

    Google Scholar 

  83. Romani, G.L. and Pizzella, V. (1990) Localization of brain activity with magnetoencephalography, in S. Sato (ed.), Advances in Neurology: Magnetoencephalography Vol.54, Raven Press, New York, pp. 67–78.

    Google Scholar 

  84. Chen, C., Ouyang, X., Wong, W.H., Hu, X., Johnson, V.E., Ordonez, C. and Metz, C.E. (1991) Sensor fusion in image reconstruction, IEEE Trans Nucl.Sci. NS-38, 687–692.

    Article  ADS  Google Scholar 

  85. Hoffman, E.J., Huang, S.C. and Phelps, M.E. (1979) Quantitation in Positron Emission Computed Tomography: 1. Effect of object size, J. Comput Assis.Tomogr. 3,299–308.

    Article  Google Scholar 

  86. Muller-Gartner, H.W., Links, M.J., Prince, J.L., Bryan, R.N., McVeigh, E., Leal, J.P., Davatzikos, C. and Frost J.J. (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effect, J.Cereb.Blood Flow Metab. 12, 571–583.

    Article  Google Scholar 

  87. Schmidt, K., Lucignani, G., Moresco, R.M., Rizzo, G., Gilardi, M.C., Messa, C., Colombo, F., Fazio, F. and Sokoloff, L. (1992) Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F] fluorodeoxyglucose method, J. Cereb. Blood Flow Metab. 12, 823–834.

    Article  Google Scholar 

  88. Herscovitch, P., Auchus, A.P., Gado, M., Chi, D. and Raichle, M.E. (1986) Correction of Positron Emission Tomography data for cerebral atroph, J.Cereb.Blood Flow Metab. 6, 120–124.

    Article  Google Scholar 

  89. Videen, T.O., Perhnutter, J.S., Mintun, M.A. and Raichle, M.E. (1988) Regional correction of positron emission tomography data for the effects of cerebral activity, J.Cereb.Blood Flow Metab. 8, 662–670.

    Article  Google Scholar 

  90. Stefan, H., Shneider, S., Abraham-Fuchs, K., Bauer, J., Feistel, H., Pawlik, G., Neubauer, U., Rohrlein, G. and Huk, W.J. (1990) Magnetic source localization in focal epilepsy, Brain 113, 1347–1359.

    Article  Google Scholar 

  91. Paetau, R., Kayola, M., Karhu J., Nousiainen, U., Partanen, J., Tiihonen, J., Vapalahti, M. and Han, R. (1992) Magnetoencephalographic localization of epileptic cortex - impact on surgical treatments, Ann.Neurol. 32, 106–109.

    Article  Google Scholar 

  92. Theodore, W.H. (ed.) (1988) Clinical Neuroimaging, Alan R. Liss inc.,New York.

    Google Scholar 

  93. Di Chiro, G., Oldfield, E., Wright, D.C., De Michele, G., Patronas, N., Doppman, J.L., Larson, S.M., Masanori, I. and Kufta, C.V. (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies, Am.J.Roentgenol. 150, 189–197.

    Google Scholar 

  94. Stefan, H., Schneider, S., Feistel, H., Pawlik, G., Schuler, P., Abraham-Fuchs, K., Schlegel, Т., Neubauer, U. and Huk, W.J. (1992) Ieta! and interictal activity in partial epilepsy recorded with multichannel magnetoencephalography: correlation of electroencephalography/ electrocorticography, magnetic resonance imaging, single photon emission computed tomography and positron emission tomography findings, Epilepsia 33, 874–887.

    Article  Google Scholar 

  95. Pantev, C., Hoke, M., Lehnertz, K., Lutkenhoner, B., Fahrendorf, G. and Stober, U. (1990) Identification of sources of brain neuronal activity with high spatio-temporal resolution through combination of neuromagnetic source localization (NMSL) and magnteic resonance imaging (MRI), Electroencephalogr. Clin Neurophysiol. 75, 173–184.

    Article  Google Scholar 

  96. Gevins, A., Cutillo, B., Durousseau, D., Le, J., Leong, H., Martin, N., Smith, M.E., Bressler, S., Brickett, P., McLaughlin, J., Barbero, N. and Laxer, K. (1994) Imaging the spatio-temporal dynamics of cognition with high resolution evoked potential methods, Human Brain Mapping 1, 101–116.

    Article  Google Scholar 

  97. Tatcher, R.W. (1995) Tomographic electroencephalography-magnetoencephalography: dynamics of human neural network switching, J.Neuroimag. 5, 35–45.

    Google Scholar 

  98. Walter, H., Kristeva, R., Knorr, U., Schlaug, G., Huang, Y., Steinmetz, H., Nebeling, B., Herzog, H. and Seitz, R.J. (1992) Individual somatotopy of primary sensorimotor cortex revealed by intermodal matching of MEG, PET, and MRI, Brain Topography, 5, 183–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilardi, M.C., Rizzo, G., Lucignani, G., Fazio, F. (1996). Integrating Competing Technologies with MEG. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics