Skip to main content

Magnetocardiographic and Electrocardiographic Mapping Studies

  • Chapter
SQUID Sensors: Fundamentals, Fabrication and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

The electrical activity of the heart can be monitored electrically with electrodes or magnetically using SQUIDS. With multiple measuring sites, covering a significant portion of the upper torso, Body Surface Potential Maps (BSPMs) or Magnetic Field Maps (MFMs) can be constructed every 1 or 2 ms, providing detailed temporal and spatial information about cardiac electrical activity. Several methods are available to extract clinically useful parameters from this wealth of information. Using inverse solutions, cardiac function can be assessed, and cardiac events located. When such an event is implicated in arrhythmia, knowledge of the location of this site can be used to guide the catheter toward it for possible ablation. Lately, the BSPM technique has been used to record maps that result from endocardial catheter pacing. The resulting BSPM is characteristic for the pacing site, and when similar to the surface maps obtained during spontaneous arrhythmogenic events, the pacing catheter is assumed to be close to the cardiac tissue initiating the arrhythmia. This method of localization provides an alternative to the traditional inverse solutions based on numerical methods. A similar technique of matching patterns also can be used with MFMs. We review the different localization techniques that use MFMs and/or BSPMs. Such techniques, together with MRI, are now under development to provide the clinician with electrical images of the heart surface for the assessment of cardiac function. We also summarize results of the analysis of MFMs and BSPMs of the same patient or patient group with an emphasis on finding landmarks in such maps that are predictors of clinical cardiac events. The results obtained so far are encouraging for both BSPM and MFM. Systematic multichannel MFM studies with substantial patient populations are needed to demonstrate the clinical importance of cardiac magnetic field mapping. This new mapping method, made possible by recent developments in SQUID technology, could provide, by itself, or together with BSPM, a powerful, quick, non-invasive method to image electrical activity of the heart to assist in clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nahum, L.H., Mauro, A., Chemoff, H. and Sikand, R.S. (1951) Instantaneous equipotential distribution on surface of the human body for various instants in the cardiac cycle, J. Appl. Physiol. 3, 454–464.

    Google Scholar 

  2. Cohen, D. and Chandler, L. (1969) Measurements and a simplified interpretation of magnetocardiograms from humans, Circulation 39, 395–402.

    Article  Google Scholar 

  3. Peters, M.J., van de Graaf, A.P. and van Oosterom, A. (1981) The influence of the torso on the magnetic field of a current dipole, in S.N. Erne, H.D. Hahlbom and H. Lubbig (eds.), Biomagnetism, de Gruyter, Berlin, pp. 337–342.

    Google Scholar 

  4. MacAulay, C.E., Stroink, G. and Horacek, B.M. (1985) Signal analysis of magnetocardiograms to test their independence, in H. Weinberg, G. Stroink and T. Katila (eds.), Biomagnetism: Applications and Theory. Pergamon Press, New York, pp. 115–120.

    Google Scholar 

  5. Spach, M.S., Bair, R.C., Lanning, C.F. (1978) Experimental basis for QRS and T wave potentials in WPW syndrome, Circulation 62, 103–118.

    Google Scholar 

  6. Schneider, S., Hoenig, E., Reichenberger, H., Abraham-Fuchs, K., Moshage, W., Oppelt, A., Stefan, H., Weikl, A. and Wirth A. (1990) Multichannel biomagnetic system for study of electrical activity of the brain and heart, Radiology 176, 825–830.

    Google Scholar 

  7. Simelius, K., Ahonen, A., Huotilainen, M., Ilmoniemi, R., et al. (1995) BioMag: Functional brain and heart research in clinical environment, Proceedings 17th Ann. Int. conf. IEEE Eng. in Med. Biol. Soc., Montreal.

    Google Scholar 

  8. Siltanen, P. (1989) Magnetocardiography, in P.W. MacFarlane and T.D. Veitch Lawrie (eds.), Comprehensive Electrocardiology, Pergamon Press, New York, pp. 1405–1438.

    Google Scholar 

  9. Fenici, R.R., Melillio, G. and Maselli, M. (1991) Clinical magnetocardiography, Int. J. Cardiac Imag. 7, 151–167.

    Article  Google Scholar 

  10. Stroink, G. (1993) Cardiomagnetic Imaging, in B.L. Zaret, L. Kaufman, A.S. ‘Berson and R.A. Dunn (eds.), Frontiers in Cardiovascular Imaging, Raven Press, New York, pp. 161–177.

    Google Scholar 

  11. Nakaya, Y. and Mori, H. (1992) Magnetocardiography, Clin. Phys. Physiol. Meal. 13, no.3, 191–229.

    Article  Google Scholar 

  12. Flowers, N.C. and Horan, L.G. (1995) Body surface potential mapping, in D.P. Zipes and J. Jalife (eds.), Cardiac electrophysiology: from cell to bedside, W.B. Saunders Corp., Philadelphia, pp.1049–1067.

    Google Scholar 

  13. Green, L.S. and Abildskov, J.A. (1995) Clinical applications of body surface potential mapping, Clin. Cardiol. 18, 245–249.

    Article  Google Scholar 

  14. Williamson, S.J. and Kaufman, L. (1981) Magnetic fields of the cerebal cortex, in S.N. Erne, H.D. Hahlbom and H. Lubbig (eds.), Biomagnetism,de Gruyter, Berlin, pp. 353–402.

    Google Scholar 

  15. Gulrajani, R.M. (1988) Models of the electrical activity of the heart and computer simulation of the electrogram, CRC Crit. Rev. Biomed. Eng. 16, no.1, 1–66.

    Google Scholar 

  16. Ferguson, A.S., Zhang, X. and Stroink, G. (1994) A complete linear discretization for calculating the magnetic field using the Boundary Element Method, IEEE Trans. Biomed. Eng. BME-41, no. 5, 455–460.

    Article  Google Scholar 

  17. Ferguson, A.S. and Stroink, G. (1996) Factors affecting the accuracy of the Boundary Element Method in the forward problem. Part I: Calculating surface potentials. To be published.

    Google Scholar 

  18. Lamothe, M.J.R. (1993) The feasibility of separating concurrent sources in cardiac magnetic field and body surface potential maps, Ph.D. thesis, Dalhousie University.

    Google Scholar 

  19. Purcell, C., Stroink, G. and Horacek, B.M. (1988) Effect of torso boundaries on electrical potential and magnetic field of a dipole, IEEE Trans. Biomed. Eng. BME-35, 671–678.

    Article  Google Scholar 

  20. Rudy, Y. (1987) The effects of the thoracic volume conductor (inhomogeneities) on the electrocardiogram, in J. Liebman, R. Plonsey and Y. Rudy (eds.), Pediatrics and fundamental electrocardiography. Martinus Nijhoff, Boston. pp. 49–74.

    Chapter  Google Scholar 

  21. Van Oosterom, A. and Huiskamp, G.J. (1989) The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometries, J. of Electrocard. 22, no. 1, 53–72.

    Article  Google Scholar 

  22. Geselowitz, D.B. and Miller, W.T. (1973). Extra-corporal magnetic fields generated by internal biomagnetic sources, IEEE Trans. Mag. Mag-9 (3), 392–398.

    Article  ADS  Google Scholar 

  23. Horacek, B.M. (1973) Digital model for studies in magnetocardiography, IEEE Trans. Magn. MAG-6, 346–347.

    Google Scholar 

  24. Van Oosterom, A., Oostendorp, T.F., Huiskamp, G., and ter Brake, H.J.M. (1990) The magnetocardiogram as derived from electrocardiographic data, Circulation Research, 67, 1503–1509.

    Article  Google Scholar 

  25. Plonsey, R. (1982) The nature of sources of bioelectric and biomagnetic fields, Biophys. J., 39, 309–312.

    Article  Google Scholar 

  26. Sepulveda, N.G. and Wikswo, J.P. (1987) Electric and magnetic fields from two-dimensional anisotropie bisyncytia, Biophys. J.,51, 55–568.

    Article  Google Scholar 

  27. Nenonen, J., Horacek, B.M. and Katila, T. (1992), Torso and heart models in magnetocardiology, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 417–425.

    Google Scholar 

  28. Leon, L.J. and Horacek, B.M. (1991) A computer model of excitation and recovery in the anisotropie myocardium, J. Electrocardiol.,24, 1–41.

    Article  Google Scholar 

  29. Hren, R., Nenonen, J. Machines, P. and Horacek, B.M. (1995) Simulated body-surface potential maps for paced activation sequences in human ventricles, in A. Murray, R. Arzbaecher (eds.), Computers in Cardiology, IEEE Press, Piscataway, pp. 95--98

    Google Scholar 

  30. Nenonen, J. and Horacek, B.M. (1995). Comparison of electric and magnetic fields of anisotropie myocardium, to be published.

    Google Scholar 

  31. Stator, D.J., Friedman, R.N. and Wikswo, Jr. J.P. (1993) High resolution SQUID imaging of octupolar currents in anisotropic tissue. IEEE Trans. Appl. Supercond. 3, no. 1, 1934–1936.

    Article  Google Scholar 

  32. SippensGroenewegen, A., Spekhorst H., van Herd N.M., Herre Kingma J., Hauer R.N.W,, de Bakker, J.M.T., Grimbergen, C.A., Janse, M.J. and Dunning A.J. (1993) Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping, Circ. 88, no. 5, 2290–2306.

    Article  Google Scholar 

  33. Hren, R., Zhang, X. and Stroink, G. (1996) Comparison between electro-cardiographic and magnetocardiographic inverse solutions using the boundary element method, Med. & Biol. Eng. & Corp. 34, no.2, 110–114.

    Article  Google Scholar 

  34. Startt-Selvester, R.H. (1992) Nomina Anatomica Contradicta, J. Electrocardiol. 25, 157–159.

    Article  Google Scholar 

  35. Hren, R. (1993) The effect of inhomogeneities on electrocardiographic and magneto-cardiographic inverse solutions. M.Sc. Thesis, Dalhousie University.

    Google Scholar 

  36. Forsman K., Nenonen, J., Purcell, C. and Stroink, G. (1992) Biomagnetic inverse solution with a realistic torso, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism; Clinical Aspects, Elsevier, Amsterdam, pp. 819–823.

    Google Scholar 

  37. Nenonen, J., Edens, J.A., Leon, L.J. and Horacek, B.M. (1991) Computer model of propagation excitation in the anisotropic human heart, in K. Ripley and A. Murray (eds.), Computers in Cardiology, IEEE Computer Society Press, Los Alamitos, CA, 217–220.

    Google Scholar 

  38. Wikswo, J.P., this volume.

    Google Scholar 

  39. Stroink, G., Greek, L.S., Elliott, P., Nenonen, J. and MacGregor, J.H. (1992) Is there a need for individualized homogeneous torso models for magnetic inverse solutions?, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism,Clinical Aspects, Elsevier, Amsterdam, pp. 813–817.

    Google Scholar 

  40. Hamalainen, M.S. and Ilmoniemi, R.J. (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions, Helsinki University of Technology report TKK-F-A559.

    Google Scholar 

  41. Ferguson, A.S. and Stroink, G. (1995) Localization of epicardial sources using magnetic and potential maps, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp. 641–646.

    Google Scholar 

  42. Graumann, R., Abraham-Fuchs, K., Moshage, W. and Schneider, S. (1992) Reconstruction of current densities with anatomical constraints, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism,Clinical Aspects, Elsevier, Amsterdam, pp. 813–818.

    Google Scholar 

  43. Fuchs, M., Wagner, M., Wischman, H.-A., Dossel, O. (1995) Cortical current imaging by morphologically constrained reconstructions, in L. Deecke, C. Baumgartner, G. Stroink and S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp. 320–325.

    Google Scholar 

  44. Gulrajani, R.M., Roberge, F.A. and Savard, P. (1989) The inverse problem of electrocardiography, in P.W. MacFarlane and T. D. Veitch Lawrie (eds.), Comprehensive Electrocardiology, Pergamon Press, New York, pp. 327–284.

    Google Scholar 

  45. Oster, H.S. and Rudy, Y. (1992) The use of temporal information in the regularization of the inverse problem in electrocardiology, IEEE Trans. Biomed. Eng. BME-39, pp. 65–75.

    Article  Google Scholar 

  46. Tan, G.A., Brauer, F., Stroink, G. and Purcell, C.J. (1992) The effect of measuring conditions on MCG inverse solution, IEEE Trans. Biomed. Eng. BME-39, pp. 921–927.

    Article  Google Scholar 

  47. Stroink, G., Purcell, C., Lamothe, R., Merritt, R., Horacek, B.M. and ten Voorde, B.J. (1988) Body surface potential and magnetic mapping, in K. Atsumi, M. Kotani, S. Ueno, T. Katila, and S.J. Williamson (eds.), Biomagnetism ‘87,Tokyo Denki Univ. Press, Tokyo, pp.74–81.

    Google Scholar 

  48. Breithardt, G., Cain, M.E., El-Sherif, N., Flowers, N.C., Hombach V., Janse, M., Simson, M.B. and Steinbeck, G. (1991) Standards for analysis of ventricular late potentials using high-resolution or signal-averaged electrocardiography. Circulation, 83, no.4, 1481–1488.

    Article  Google Scholar 

  49. Barr, R.C., Spach, M.S. and Herman-Giddens, G.S. (1971) Selection of the number and position of measuring locations for electrocardiography. IEEE Trans. Biomed. Eng. BME-18, 125–138.

    Article  Google Scholar 

  50. Nousiainen, J.J., Oja, O.S. and Malmivuo, J.A. (1994) Normal vector magnetocardiogram. I. Correlation with the normal vector ECG. J. Electrocardiol. 27, no. 3,221–231.

    Article  Google Scholar 

  51. Bateman, G. (1993) Magnetocardiographic measurements in a magnetically noisy environment. M.Sc. thesis, Dalhousie University.

    Google Scholar 

  52. Varpula, T. and Poutanen, T. (1984) Magnetic field fluctuations arising from thermal motion of electric charge in conductors, J. Appl. Phys. 55, 4015–4021.

    Article  ADS  Google Scholar 

  53. Vrba, J., this volume.

    Google Scholar 

  54. Numminen, J., Ahlfors, S., Ilmoniemi, R., Montonen, J. and Nenonen, J. (1995) Transformation of multichannel magnetocardiographic signals to standard grid form, IEEE Trans. Biomed. Eng. BME-42, 72–78.

    Article  Google Scholar 

  55. Vrba, J., Betts, K., Burbank, M. Chueng, T. et al. (1995) Whole cortex 64 channel system for shielded and unshielded environments, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications,Elsevier, Amsterdam, pp.521–525.

    Google Scholar 

  56. Tavrin, Y., Zhang, Y., Mock, M.A. and Braginski, A.I. (1994) A second order SQUID gradiometer operating at 77 K, Supercond. Sci. Technol., 7, 265–268.

    Article  ADS  Google Scholar 

  57. Zimmerman, J.E. (1977) SQUID instruments and shielding for low-level magnetic measurementsJ. Appl. Phys. 48, 702–710.

    Article  ADS  Google Scholar 

  58. Stroink, G., Purcell, C., Brauer, F. and Blackford, B. (1983) An eddy current shielded room with partially closed entrance, Il Nuovo Cimento 2D, no.2, 195–202.

    Article  ADS  Google Scholar 

  59. Stroink, G. and MacAulay, C. (1986) Thermal magnetic noise generated by an eddy current shielded room, Rev. Sci. Instrum. 57 (4), 658–660.

    Article  ADS  Google Scholar 

  60. Matsuba, H., Shintomi, K., Yahara, A., Irisawa, D., Ima, K., Yoshida, H. and Seike, S. (1995) Superconducting shield enclosing a human body for biomagnetic measurements, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp.483–489.

    Google Scholar 

  61. Ma, Y.P. and Wikswo, Jr., J.P. (1991) Magnetic shield for wide-bandwidth magnetic measurements for nondestructive testing and biomagnetism, Rev. Sci. Instrum. 62 (11), 2654–2661.

    Article  ADS  Google Scholar 

  62. Sullivan, G.W., Lewis, P.S., George, J.S. and Flynn, E.R. (1989) A magnetic shielded room designed for magnetoencephalography, Rev. Sci. Instrum 60 (4), 765–770.

    Article  ADS  Google Scholar 

  63. Amuneal Manufacturing Corp., Philadelphia, PA 19124, USA.

    Google Scholar 

  64. Vacuumschmelze GMBH, D-6450 Hanau, Germany.

    Google Scholar 

  65. Lam, J., Stroink, G., Montague, T.J., Gardner, M.J. and Mieszkowski, M. (1990) Discrimination between myocardial infarct groups through the use of iso-integral magnetic field maps, Am. J. Noninv. Cardiol. 5, 215–222.

    Google Scholar 

  66. Purcell, C., Stroink, G. and Montague, T.J. (1989) Classification of infarcts using electric and magnetic inverse solutions, in S.J. Williamson, M. Hoke, G. Stroink and M. Kotani (eds.), Advances in Biomagnetism,Plenum Press, New York, pp. 429–432.

    Chapter  Google Scholar 

  67. Lux, R.L., Evans, A.K., Burgess, A.K., Wyatt, R.F. and Abildskov, J.A. (1981) Redundancy reduction for improved display and analysis of body surface potential maps, I: Spatial compression, Circ. Res. 49 (1), 186–196.

    Article  Google Scholar 

  68. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1992) Numerical recipes: The art of scientific computing, Cambridge University Press.

    Google Scholar 

  69. Laniothe, R. and Stroink, G. (1991) Orthogonal expansions: their applicability to signal extraction in electrophysiological mapping data, Med. & Biol. Eng. & Corp. 29, 522–528.

    Article  Google Scholar 

  70. Vester, E.G. and Strauer, B.E. (1994) Ventricular late potentials: state of art and future perspectives, Europ. Heart J.,15 (Suppl. C), 34–48.

    Article  Google Scholar 

  71. Cain, M.E., Ambos, H.D., Arthur, R.M. and Lindsay, B.D. (1992). Signal-averaged electrocardiography: methods of analysis and clinical impact, in W.W. Parmley and K. Chatterjee (eds.), Cardiology: Physiology, Pharmacology, Diagnosis, JB Lippincott Co., Philadelphia, pp.1–20.

    Google Scholar 

  72. Savard, P., Davies, R.F., Dupuis, R., Ferguson, J., Gardner, M., Lauzon, C., Morel, P., Poitras, N., Stewart, D.J., Sussex, B., Talajic, M., Warnica, W.J. and Rouleau, J.L. (1996) Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age and myocardial infarction type. To be published.

    Google Scholar 

  73. Makijarvi, M., Montonen, J., Toivonen, L., Leini, M., Siltanen, P., and Katila, T. (1994) High-resolution and signal-averaged electrocardiography to separate post-myocardial infarction patients with and without ventricular tachycardia, Europ. Heart J. 15, 189–199.

    Article  Google Scholar 

  74. Erne, S.N., Fenici, R.R., Hahlbohm, H.-D., Jaszczuk, W., Lehmann, H.P. and Masselli, M., (1983) High resolution magnetocardiographic recordings of the ST segment in patients with electrical late potentials, Il Nuovo Cimento,2D: 340–345.

    Article  ADS  Google Scholar 

  75. Stroink, G., Vardy, D., Lamothe, R. and Gardner, M. (1989) Magnetocardiographic and electrocardiographic recordings of patients with ventricular tachycardia, in S.J. Williamson, M. Hoke, G. Stroink and M. Kotani (eds.), Advances in Biomagnetism, Plenum Press, New York, pp. 437–440.

    Chapter  Google Scholar 

  76. Weismuller, P., Richter, P., Abraham-Fuchs, K., Rarer, W., Schneider, S., Hoher, M., Kochs, M., Edrich, J. and Hombach, V. (1993) Spatial differences of the duration of ventricular late potentials in the signal-averaged magnetocardiogram in patients with ventricular late potentials, Clin. Electrophysiol. 16 (1): 7079.

    Google Scholar 

  77. Makijarvi, M., Montonen, J., Toivonen, L., Leinio, M., Siltanen, P. and Katila, T. (1992) High-resolution magnetocardiography can identify ventricular tachycardia patients after myocardial infarction, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 483–486.

    Google Scholar 

  78. Erne, S.N., this volume.

    Google Scholar 

  79. Montonen, J. (1995) Magnetocardiography in identification of patients prone to malignant arrhythmias, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications,Elsevier, Amsterdam, pp. 606–611.

    Google Scholar 

  80. Smith, E.R., Gardner, M.J., Montague, T.J. and Horacek, B.M. (1985) Sudden cardiac death: the search for a non-invasive means to detect the electrical substrate for the development of life-threatening cardiac arrhythmias, Clin. and Invest. Med. 8, No.1, 41–47.

    Google Scholar 

  81. Gardner, M.J., Montague, T.J., Armstrong, C.S., Horacek, B.M. and Smith, E.R. (1986) Vulnerability to ventricular anhythmias: assessment by mapping of body surface potentials, Circulation 73: 684–692.

    Article  Google Scholar 

  82. Hubley-Kozey, C.L., Mitchell, L.B., Gardner, M.J., Warren, J.W., Penny, C.J., Smith, E.R., Horacek, B.M. (1995) Spatial features in Body-Surface Potential Maps can identify patients with a history of sustained Ventricular Tachycardia. Circulation,92, 1825–1838.

    Article  Google Scholar 

  83. Stroink, G., Lant, J., Elliott, P., Charlebois, P. and Gardner, M.J. (1992) Discrimination between myocardial infarct and ventricular tachycardia patients using magnetocardiographic trajectory plots and iso-integral maps, J. Electrocard. 25, 129–142.

    Article  Google Scholar 

  84. Stroink, G., Lant, J., Elliott, P., Lamothe, R. and Gardner, M. (1992) Magnetic field and body surface potential mapping of patients with ventricular tachycardia, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 471–475.

    Google Scholar 

  85. Huang, S.K.S. (1987) Use of radiofrequency energy for catheter ablation of the endomyocardium: a prospective energy source, J. Electrophysiol. 1, 78–91.

    Google Scholar 

  86. SippensGroenewegen, A., Spekhorst, H., van Hemel, N.M., Herre Kingma, J., Hauer, R.N.W., Janse, M.J. and Dunning, A.J. (1990) Body surface mapping of ectopic left and right ventricular activation, Circulation, 82, 879–896.

    Article  Google Scholar 

  87. Moshage, W., Achenbach, S., Gohl, K., Rarer, W., Schneider, S. and Bachman, K. (1992) Magnetocardiography in combination with MRI: Verification of localization accuracy with a nonmagnetic pacing catheter, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 447–451.

    Google Scholar 

  88. Moshage, W., Achenbach, S., Schneider, S., Gohl, K., Abraham-Fuchs, K., Graumann, R. and Bachmann, K. (1992) Application of multichannel systems in magneto-cardiography, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 439–446.

    Google Scholar 

  89. Weismuller, P., Abraham-Fuchs, K., Schneider, S., Richter, P., Rarer, W., Kochs, M., Edrich, J. and Hombach, V. (1992) Magnetocardiographic localization of ventricular tachycardias with a multichannel system, in M. Hoke, S.N. Erne, Y.C. Okada and G.L. Romani (eds.), Biomagnetism, Clinical Aspects, Elsevier, Amsterdam, pp. 465–469.

    Google Scholar 

  90. Moshage, W., and Achenbach, S. (1995) Functional localization in cardiology with MCG, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications,Elsevier, Amsterdam, pp. 552–556.

    Google Scholar 

  91. Weismuller, P., Abraham-Fuchs, K., Killmann, R., Richter, P., Rarer, W., Hoher, M., Kochs, M., Eggeling, Th. and Hombach, V. (1995) Localization of the site of origin of ventricular late fields in the signal averaged magnetocardiogram in patients with ventricular late potentials, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp. 566–570.

    Google Scholar 

  92. Weismuller, P. (1992) Role of magnetocardiography (MCG) in cardiology, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism Fundamental research and clinical applications, Elsevier, Amsterdam, pp.542–545.

    Google Scholar 

  93. Nomura, M., Nakaya, Y., Saito, K., Kishi, F., Miyoshi, H., Ito, S, Wada, M., Fujita, S., Takae, T., Tamura, I. (1995) Localization of the focus in ventricular tachycardia by magnetocardiogram, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications,Elsevier, Amsterdam, pp. 571–575.

    Google Scholar 

  94. Ushijima, S., Magara, T., Kawasuji, M. et al. (1985) Diagnosis of the origin of ventricular tachycardia by body surface maps-evaluation of QRS wave mapping and T wave mapping, Jpn. J. Electrocardiol 5: 190–197.

    Article  Google Scholar 

  95. Yuan, S., Blomstrom, P., Pehrson, S. and Olsson, S.B. (1991) Localization of cardiac arrhythmias: conventional noninvasive methods, Int. J. Cardiac Imag. 7, 193–205.

    Article  Google Scholar 

  96. Iwa, T. and Magara, T. (1981) Correlation between localization of accessory conduction pathway and body surface maps in WPW syndrome, Jpn. Circ. J. 45, 1192–1198.

    Article  Google Scholar 

  97. Benson, D.W., Sterba, R., Gallagher, J.J., Waltson, A.I.I., Spach, M.S. (1982) Localization of the site of ventricular preexcitation with body surface potential maps in patients with WPW syndrome, Circulation 65, 1259–1268.

    Article  Google Scholar 

  98. Lainothe, R.M.J., Stroink, G. and Gardner, M.J. (1996) BSPM recording of a WPW patient with two accessory pathways and two atrial complexes, J. Electrocard. 129 (2), 139–147.

    Google Scholar 

  99. Dubuc M., Nadeau, R., Tremblay, G., Kus, T., Molim F., Savard, P. (1993) Pace mapping using body surface maps to guide catheter ablation of accessory pathways in patients with WPW syndrome, Circulation 87, 135–143.

    Article  Google Scholar 

  100. Nakaya, Y., Nomura, M., Saito, K., Kishi, F., Miyoshi, H., Nishikado, A., Bando, S. and Nishitani, H. (1995) Comparative studies of magnetocardiographic and electrocardiographic mappings for the localization of accessory pathway in WPW syndrome, in C. Baumgartner, L. Deecke, G. Stroink, S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp. 580–585.

    Google Scholar 

  101. Purcell, C., Stroink G. and Horacek, B.M. (1987) Magnetic inverse solution using a homogeneous torso model. Proc. 9th Ann. Conf. of IEEE Eng. in Med. and Biot., 214–215.

    Google Scholar 

  102. Makijarvi, M., Nenonen, J., Leinio, M., Montonen, J., Toivonen, L., Nieminen, M.S., Katila, T. and Siltanen, P. (1992) Localization of accessory pathways in WPW syndrome by high resolution magnetocardiographic mapping, J. Electrocard. 25, 143–155.

    Article  Google Scholar 

  103. Nenonen, J., Purcell, C.J., Horacek, B.M., Stroink, G. and Katila, T. (1991) Magnetocardiographic functional localization using a current dipole in a realistic torso. IEEE Trans. Biomed. Eng. 38, 658–664.

    Article  Google Scholar 

  104. Hren, R. and Stroink, G. (1995) Application of the surface harmonic expansions for modeling the human torso, IEEE Trans. Biomed. Eng. 42, 521–524.

    Article  Google Scholar 

  105. Lamothe, R., Stroink, G. and Gardner, M.J. (1995) Body surface potential and magnetic field maps of WPW syndrome patients, in L. Deecke, C. Baumgartner, G. Stroink, and S.J. Williamson (eds.), Biomagnetism: Fundamental research and clinical applications, Elsevier, Amsterdam, pp. 591–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stroink, G., Lamothe, M.J.R., Gardner, M.J. (1996). Magnetocardiographic and Electrocardiographic Mapping Studies. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics