Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

DC Superconducting Quantum Interference Devices (SQUIDs) incorporating two resistively shunted tunnel junctions are routinely fabricated from thin films of lowtransition-temperature (Tc) superconductors. An integrated superconducting input coil couples the SQUID to the signal source. Typical dc SQUIDs operating at 4.2K have a magnetic flux noise of 10-6Ф0 Hz-1/2 corresponding to a noise energy of 10-32 JHz-1 at frequencies f above the 1/f noise knee, which may be below 1Hz (Ф0 = h/2e is the flux quantum). Recently, the performance of thin-film rf SQUIDs, which involve a single junction, has improved significantly, and the sensitivity of a device operated at 3 GHz approaches that of dc SQUIDs. In the last two years, there have been dramatic improvements in the performance of both do and rf SQUIDs made from high-Tc thin films, and noise energies of about 10-30 JHz-1 and magnetic field noise levels below 10fTHz-1/2 at frequencies down to a few Hz have been achieved at 77K. Multilayer thin-film flux transformers are now available. Instruments based on low-Tc SQUIDs include magnetometers, magnetic gradiometers, voltmeters, susceptometers, amplifiers, and displacement sensors; their applications vary from neuromagnetism and magnetotelluric sounding to the detection of gravity waves and magnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. London, F. (1950) Superfluids, Wiley, New York.

    MATH  Google Scholar 

  2. Josephson, B. D. (1962) Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253;

    Article  ADS  MATH  Google Scholar 

  3. Supercurrents through barriers, (1965) Adv. Phys. 14, 419–451.

    Google Scholar 

  4. Jaklevic, R. C., Lambe, J., Silver, A. H., and Mercereau, J. E. (1964) Quantum interference effects in Josephson tunneling, Phys. Rev Lett. 12, 159–160.

    Article  ADS  Google Scholar 

  5. Zimmerman, J. E., Thiene, P., and Harding. J. T. (1970) Design and operation of stable rf-biased superconducting point-contact quantum devices, and a note on the properties of perfectly clean metal contacts, J. Appl. Phys. 41, 1572–1580.

    Article  ADS  Google Scholar 

  6. Mercereau, J. E. (1970) Superconducting magnetometers, Rev. Phys. Appl. 5. 13–20;

    Article  Google Scholar 

  7. Nisenoff. M. (1970) Superconducting magnetometers with sensitivities approaching 10-10 gauss, Rev. Phys. Appl. 5, 21–24.

    Article  Google Scholar 

  8. Clarke, J. (1993) SQUIDs: theory and practice, in H. Weinstock and R. W. Ralston (eds.), The New Superconducting Electronics,Kluwer Academic Publishers, Dordrecht, pp. 123–180.

    Chapter  Google Scholar 

  9. Stewart, W. C. (1968) Current-voltage characteristics of Josephson junctions, Appl. Phys. Lett. 12, 277–280.

    Article  ADS  Google Scholar 

  10. McCumber, D. E. (1968) Effect of ac impedance on dc voltage-current characteristicsof Josephson junctions, J. Appl. Phys. 39,3113–3118.

    Article  ADS  Google Scholar 

  11. Ambegaokar, V. and Halperin, B. I. (1969) Voltage due to thermal noise in the dc Josephson effect, Phys. Rev. Lett. 22, 1364–1366.

    Article  ADS  Google Scholar 

  12. Clarke, J. and Koch, R. H. (1988) The impact of high-temperature superconductivity on SQUIDs, Science 242, 217–223.

    Article  ADS  Google Scholar 

  13. Likharev, K. K. and Semenov, V. K. (1972) Fluctuation spectrum in superconducting point junctions, Pis’ma Zh. Eksp. Teor. Fiz. 15,625–629. [(1972) JETP Lett. 15, 442–445].

    Google Scholar 

  14. Vystavkin, A. N., Gubankov, V. N., Kuzmin, L. S., Likharev, K. K., Migulin, V. V., and Semenov, V. K. (1974) S-c-s junctions as nonlinear elements of microwave receiving devices, Phys. Rev. Appl. 9, 79–109.

    Article  Google Scholar 

  15. Koch, R. H., Van Harlingen, D. J., and Clarke, J. (1980) Quantum noise theory for the resistively shunted Josephson junction, Phys. Rev Lett. 45, 2132–2135.

    Article  ADS  Google Scholar 

  16. Tesche, C. D. and Clarke. J. (1977) do SQUID: noise and optimization J. Low. Temp. Phys. 27, 301–331.

    Article  ADS  Google Scholar 

  17. Bruines, J. J.,P., de Waal, V. J., and Mooij, J. E. (1982) Comment on DC SQUID noise and optimization, by Tesche and Clarke J. Low. Temp. Phys. 46, 383–386.

    Article  ADS  Google Scholar 

  18. De Waal, V. J., Schrijner, P., and Llurba, R. (1984) Simulation and optimization of a dc SQUID with finite capacitance, J. Low. Temp. Phys. 54, 215–232.

    Article  ADS  Google Scholar 

  19. Ketchen, M. B., and Jaycox, J. M. (1982) Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil, Appl. Phys. Lett. 40, 736–738.

    Article  ADS  Google Scholar 

  20. Jaycox, J. M. and Ketchen, M. B. (1981) Planar coupling scheme for ultra low noise dc SQUIDs, IEEE Trans. Magn., MAG-17, 400–403.

    Google Scholar 

  21. Barlknecht, A., Colclough, M. S., and de la Cruz, A. Conductus, Inc., Sunnyvale, California (unpublished).

    Google Scholar 

  22. Gurvitch, M., Washington, M. A., and Huggins, H. A. (1983) High quality refactory Josephson tunnel junction utilizing thin aluminum layers, Appl. Phys. Lett. 42, 472–474.

    Article  ADS  Google Scholar 

  23. De Waal, V. J., Klapwijk, T. M., and Van den Hamer, P. (1983) High performance dc SQUIDs with submicrometer niobium Josephson junctions, J. Low. Temp. Phys. 53, 287–312.

    Article  ADS  Google Scholar 

  24. Tesche, C. D., Brown, K. H., Callegari, A. C., Chen, M. M., Greiner, J. H., Jones, H. C., Ketchen, M. B., Kim, K. K., Kleinsasser, A. W., Notarys, H. A., Proto, G., Wang, R. H., and Yogi, T. (1985) Practical dc SQUIDs with extremely low 1/f noise, IEEE Trans. Magn. MAG-21, 1032–1035.

    Google Scholar 

  25. Pegrum, C. M., Hutson, D., Donaldson, G. B., and Tugwell, A. (1985) DC SQUIDs with planar input coils, ibid. 1036–1039.

    Google Scholar 

  26. Noguchi, T., Ohkawa, N., and Hamanaka, K. (1985) Tunnel junction dc SQUID with a planar input coil, in H. D. Hahlbohm. and H. Lubbig (eds.), SQUID 85 Superconducting Quantum Interference Devices and their Applications, Walter de Gruyter, Berlin, pp. 761–766.

    Google Scholar 

  27. Foglietti, V., Gallagher, W. J., Ketchen, M. B., Kleinsasser, A. W., Koch, R. H., and Sandstrom, R. L., (1989) Performance of dc SQUIDs with resistively shunted inductance, Appl. Phys. Lett. 55, 1451–1453.

    Article  ADS  Google Scholar 

  28. Muhlfelder. B., Beall. J. A., Cromar, M. W., and Ono, R. H. (1986) Very low noise tightly coupled dc SQUID amplifiers, Appl. Phys. Lett. 49, 1118–1120.

    Article  ADS  Google Scholar 

  29. Knuutila, J., Kajola, N., Seppä, H., Mutikainen, R., and Salmi. J. (1988) Design, optimization and construction of a dc SQUID with complete flux transformer circuits, J. Low. Temp. Phys. 71, 369–392.

    Article  ADS  Google Scholar 

  30. Wellstood, F. C., Heiden. C., and Clarke. J. (1984) Integrated dc SQUID magnetometer with high slew rate, Rev. Sci. Inst. 55, 952–957.

    Article  ADS  Google Scholar 

  31. Carelli, P. and Foglietti, V. (1982) Behavior of a multiloop dc superconducting quantum interference device, J. Appl. Phys. 53, 7592–7598.

    Article  ADS  Google Scholar 

  32. Ketchen, M. B., Stawiasz, K. G. Pearson, D. J., Brunner, T. A. Hu, C-K, Jaso, M. A., Manny, M. P., Parsons, A. A., and Stein, K. J. (1992) Submicron linewidth input coils for low Tc integrated thin-film dc superconducting quantum interference devices, Appl. Phys. Lett. 61, 336–338.

    Article  ADS  Google Scholar 

  33. Clarke. J., Goubau, W. M., and Ketchen. M. B. (1976) Tunnel junction dc SQUID: fabrication, operation, and performance, J. Low. Temp. Phys. 25, 99–144.

    Article  ADS  Google Scholar 

  34. Ketchen, M. B., Goubau, W. M., Clarke, J., and Donaldson, G.B. (1978) Superconducting thin-film gradiometer, J. Appl. Phys. 44, 4111–4116.

    Article  ADS  Google Scholar 

  35. Wellstood, F.C., and Clarke, J. unpublished.

    Google Scholar 

  36. Wellstood, F. C., Urbina, C., and Clarke, J. (1987) Low-frequency noise in dc superconducting quantum interference devices below 1K, Appl. Phys. Lett. 50, 772–774.

    Article  ADS  Google Scholar 

  37. Roukes, M. L., Freeman, M. R., Germain, R. S., Richardson, R. C., and Ketchen, M. B. (1985) Hot electrons and energy transport in metals at millikelvin temperatures, Phys. Rev. Lett. 55, 422–425.

    Article  ADS  Google Scholar 

  38. Wellstood, F. C., Urbina, C., and Clarke, J. (1989) Hot-electron limitation to the sensitivity of the dc superconducting quantum interference device, Appl. Phys. Lett. 54, 2599–2601.

    Article  ADS  Google Scholar 

  39. Ketchen, M. B., Awschalom, D. D., Gallagher, W. J., Kleinsasser, A. W., Sandstrom, R. L., Rozen, J. R., and Bumble, B. (1989) Design, fabrication and performance of integrated miniature SQUID susceptometers, IEEE Trans. Magn. MAG-25, 1212–1215.

    Google Scholar 

  40. Koch, R. H., Clarke, J., Goubau, W. M., Martinis, J. M., Pegrum, C. M. and Van Harlingen, D. J. (1983) Flicker (l/f) noise in tunnel junction dc SQUIDs, J. Low. Temp. Phys. 51, 207–224.

    Article  ADS  Google Scholar 

  41. Rogers, C.T. and Buhrman, R.A. (1984) Composition of 1/f noise in metal-insulatormetal tunnel junctions, Phys. Rev. Lett. 53, 1272–1275.

    Article  ADS  Google Scholar 

  42. Dutta, P. and Horn, P.M. (1981) Low-frequency fluctuations in solids: 1/f noise, Rev. Mod. Phys. 53, 497–516.

    Article  ADS  Google Scholar 

  43. Savo, B., Wellstood, F. C. and Clarke. J. (1987) Low-frequency excess noise in NbAl203-Nb Josephson tunnel junction, Appl. Phys. Lett. 50, 1757–1759.

    Article  ADS  Google Scholar 

  44. Tesche, C. D., Brown, R. H., Callegari, A. C., Chen, M. M., Greiner, J. H., Jones, H. C., Ketchen, M.B., Kim, K. K., Kleinsasser, A. W., Notarys, H. A., Proto, G., Wang, R. H. and Yogi. T. (1984) Well-coupled dc SQUID with extremely low 1/f noise, in U. Eckern, A. Schmid, W. Weber, H. Wiihl (eds.), Proc. 17th International Conference on low temperature physics LT-17, North Holland, Amsterdam, pp. 263–264.

    Google Scholar 

  45. Foglietti, V. Gallagher, W. J., Ketchen, M. B., Kleinsasser, A. W., Koch, R. H., Raider, S. I. and Sandstrom, R. L. (1986) Low-frequency noise in low 1/f noise dc SQUIDS, Appl. Phys. Lett. 49, 1393–1395.

    Article  ADS  Google Scholar 

  46. Biomagnetic Technologies, Inc. 9727 Pacific Heights Blvd., San Diego, CA 92121–3719.

    Google Scholar 

  47. Fujimaki, N., Tamura, H., Imamura, T. and Hasuo, S. A single-chip SQUID magnetometer, Digest of Tech, papers of 1988 International Solid-State conference, (ISSCC), San Francisco, pp. 40–41.

    Google Scholar 

  48. Drung, D. (1986) Digital feedback loops for dc SQUIDs, Cryogenics 26, 623–627;

    Article  Google Scholar 

  49. Drung, D., Crocoll, E., Herwig, R., Neuhaus, M. and Jutzi, W. (1989) Measured performance parameters of gradiometers with digital output, IEEE Trans. Magn. MAG-25, 1034–1037.

    Article  ADS  Google Scholar 

  50. Miick, M. and Heiden, C. (1989) Simple do SQUID system based on a frequency modulated relaxation oscillator, IEEE Trans. Magn. MAG-25, 1151–1153.

    Article  ADS  Google Scholar 

  51. Drung, D., (1991) Investigation of a double-loop dc SQUID magnetometer with additional positive feedback, in H. Koch and H. Lilbbig (eds.), Superconducting Devices and their Applications, Springer-Verlag, Berlin, pp. 351–356.

    Google Scholar 

  52. Seppä, H. (1991) DC SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller, in H. Koch and H. Liibbig (eds.) Superconducting Devices and their Applications, Springer-Verlag, Berlin, pp. 346–350.

    Google Scholar 

  53. Clarke, J. (1977) Superconducting Quantum Interference Devices for low frequency measurements’ in B. B. Schwartz. and S. Foner. (eds.), Superconductor Applications: SQUIDs and Machines,Plenum, New York, pp 67–124.

    Chapter  Google Scholar 

  54. Giffard, R. P., Webb, R. A. and Wheatley, J. C. (1972) Principles and methods of low-frequency electric and magnetic measurements using rf-biased point-contact superconducting device, J. Low. Temp. Phys. 6, 533–610.

    Article  ADS  Google Scholar 

  55. Kurkijärvi, J. (1972) Intrinsic fluctuations in a superconducting ring closed with a Josephson junction, Phys. Rev. B 6, 832–835.

    ADS  Google Scholar 

  56. Kurkijärvi, J. and Webb, W. W. (1972) Thermal fluctuation noise in a superconducting flux detector, in H. M. Long and W. F. Gauster (eds.), Proc. Applied Superconductivity Conference, Annapolis, MD, pp. 581–587.

    Google Scholar 

  57. Jackel, L.D. and Buhrman, R.A. (1975) Noise in the rf SQUID, J. Low. Temp. Phys. 19, 201–246.

    Article  ADS  Google Scholar 

  58. Ehnholm, G. J. (1977) Complete linear equivalent circuit for the SQUID, in H. D. HaMbohm and H. Lubbig (eds.), SQUID Superconducting Quantum Interference Devices and their Applications, Walter de Gruyter, Berlin, pp. 485–499; Theory of the signal transfer and noise properties of the rf SQUID, J. Low. Temp. Phys. 29, 1–27 (1977).

    Google Scholar 

  59. Hollenhorst, H. N. and Giffard, R. P. (1980) Input noise in the hysteretic rf SQUID: theory and experiment, J. Appl. Phys. 51, 1719–1725.

    Article  ADS  Google Scholar 

  60. Kurkijärvi, J. (1973) Noise in the superconducting flux detector, J. App[. Phys. 44, 3729–3733.

    Article  ADS  Google Scholar 

  61. Giffard, R. P., Gallop, J. C. and Pettey, B. N. (1976) Applications of the Josephson effects, Prog. Quant. Electron 4, 301–402.

    Article  ADS  Google Scholar 

  62. Ehnholm, G.J., Islander, S. T., Ostman, P. and Rantala, B. (1978) Measurements of SQUID equivalent circuit parameters, J. de Physique 39,colloque C6. 1206–1207.

    Google Scholar 

  63. Giffard, R. P. and Hollenhorst, J. N. (1978) Measurement of forward and reverse signal transfer coefficients for an rf-biased SQUID, Appl. Phys. Lett. 32767–769.

    Article  ADS  Google Scholar 

  64. Jackel, L. D., Webb, W. W., Lukens, J. E. and Pei, S. S. (1974) Measurement of the probability distribution of thermally excited fluxoid quantum transitions in a superconducting ring closed by a Josephson junction, Phys. Rev. B9, 115–118.

    ADS  Google Scholar 

  65. Long, A., Clark, T. D., Prance.,R. J. and Richards, M. G. (1979) High performance UHF SQUID magnetometer, Rev. Sci. Instrum. 50, 1376–1381.

    Article  ADS  Google Scholar 

  66. Hollenhorst, J. N. and Giffard, R. P. (1979) High sensitivity microwave SQUID, IEEE Trans. Magn. MAG-15, 474–477.

    Article  ADS  Google Scholar 

  67. Ahola, H., Ehnholm, G. H., Rantala, B. and Ostman, P. (1978) Cryogenic GaAs-FET amplifiers for SQUIDs, J. de Physique 39, colloque C6, 1184–1185; Cryogenic GaAs-FET amplifiers for SQUIDs, (1979) J. Low Temp. Phys. 35,313–328.

    Google Scholar 

  68. Miick, Michael (1993) Progress in rf-SQUIDs, IEEE Trans. Appl. Supercond. 3, 2003–2010.

    Article  Google Scholar 

  69. Zimmerman, J. E. (1971) Sensitivity enhancement of Superconducting Quantum Interference Devices through the use of fractional-turn loops, J. Appl. Phys. 42, 4483–4487.

    Article  ADS  Google Scholar 

  70. Shoenberg, D. (1962) Superconductivity, Cambridge University Press, Cambridge.

    Google Scholar 

  71. For a review, see Clarke, J. (1983) Geophysical Applications of SQUIDs, IEEE Trans. Magn. MAG-19, 288–294.

    Article  ADS  Google Scholar 

  72. De Waal, V. J. and Klapwijk, T. M. (1982) Compact Integrated do SQUID gradiometer,Appl.Phys.Leet.41.699–671.

    Google Scholar 

  73. Van Nieuwenhuyzen, G. J. and de Waal, V. J. (1985) Second order gradiometer and dc SQUID integrated on a planar substrate, Appl. Phy. Lett. 46, 439–441.

    Article  ADS  Google Scholar 

  74. Carelli, P. and Foglietti, V. (1983) A second derivative gradiometer integrated with a dc superconducting interferometer, J. Appl. Phys. 54, 6065–6067.

    Article  ADS  Google Scholar 

  75. Koch, R. H., Ketchen, M. B., Gallagher, W. J., Sandstrom, R. L., §Àleinsasser, A. W., Gambrel, D. R., Field, T. H., and Matz, H. (1991) Magnetic hysteresis in integrated low-Tc SQUID gradiometers, Appl. Phys. Lett. 58, 1786–1789.

    Article  ADS  Google Scholar 

  76. Knuutila, J., Kajola, M., Mutikainen, R., Salmi, J. (1987) Integrated planar dc SQUID magnetometers for multichannel neuromagnetic measurements, Proc. ISEC ‘87 pp. 261.

    Google Scholar 

  77. Hoenig, H. E., Daalmans, G.M., Bär, L. , Bömmel, F. , Paulus, A. , Uhl, D. , Weisse, H. J. , Schneider, S. , Seifert, H. , Reichenberger, S. , Abraham-Fuchs K., (1991) Multichannel dc SQUID sensor array for biomagnetic applications, IEEE Trans. Magn. MAG-27, 2777–2785.

    Google Scholar 

  78. For reviews, see Romani, G. L., Williamson, S. J. and Kaufman, L. (1982) Biomagnetic instrumentation, Rev. Sci. Instrum. 53, 1815–1845;

    Article  ADS  Google Scholar 

  79. Buchanan, D. S., Paulson, D. and Williamson, S. J. Instrumentation for clinical applications of neuromagnetism, Adv. Cryo. Eng. 33, 97–106.

    Google Scholar 

  80. Neuromag, Helsinki, Finland.

    Google Scholar 

  81. Barth, D. S., Sutherling, W., Engel, J. Jr. and Beatty, J. (1984) Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain, Science 223, 293–296.

    Article  ADS  Google Scholar 

  82. Romani, G. L., Williamson, S. J. and Kaufman, L. (1982) Tonotopic organization of the human auditory cortex, Science 216, 1339–1340.

    Article  ADS  Google Scholar 

  83. Cabrera, B. (1982) First results from a superconductive detector for moving magnetic monopoles, Phys. Rev. Lett. 48, 1378–1381.

    Article  ADS  Google Scholar 

  84. Quantum Design, San Diego, CA and Conductus, Inc., Sunnyvale, CA.

    Google Scholar 

  85. Ketchen, M.B., Kopley, T. and Ling, H. (1984) Minature SQUID susceptometer, Appl Phys. Lett. 44, 1008–1010.

    Article  ADS  Google Scholar 

  86. Awschalom, D. D. and Warnock, J. (1989) Picosecond magnetic spectroscopy with integrated dc SQUIDs, IEEE Trans. Magn. MAG-25, 1186–1192.

    Article  ADS  Google Scholar 

  87. Clarke, J. (1966) A superconducting galvanometer employing Josephson tunneling, Phil. Mag. 13, 115–127.

    Article  ADS  Google Scholar 

  88. Hilbert, C. and Clarke, J. (1985) DC SQUIDs as radiofrequency amplifiers, J. Low Temp. Phys. 61, 263–280.

    Article  ADS  Google Scholar 

  89. Tesche, C. D. and Clarke, J. (1979) DC SQUID: current noise, J. Low Temp. Phys. 37, 397–403.

    Article  ADS  Google Scholar 

  90. Hilbert, C. and Clarke, J. (1985) Measurements of the dynamic input impedance of a dc SQUID, J. Low Temp. Phys. 61, 237–262.

    Article  ADS  Google Scholar 

  91. Martinis, J. M. and Clarke, J. (1985) Signal and noise theory for the dc SQUID, J. Low Temp. Phys. 61, 227–236, and references therein.

    Article  ADS  Google Scholar 

  92. Koch, R.H., Van Harlingen, D. J. and Clarke, J. (1981) Quantum noise theory for the dc SQUID, Appl. Phys. Lett. 38, 380–382.

    Article  ADS  Google Scholar 

  93. Danilov, V. V., Likharev, K. K. and Zorin, A. B.(1983) Quantum noise in SQUIDs, IEEE Trans. Magn. MAG-19, 572–575.

    Google Scholar 

  94. Hilbert, C., Clarke, J., Sleator, T. and Hahn, E. L. (1985) Nuclear quadruple resonance detected at 30MHz with a dc superconducting quantum interference device, Appl. Phys. Lett. 47, 637–639. (See references therein for earlier work on NMR with SQUIDS).

    Article  Google Scholar 

  95. . Fan, N. Q., Heaney, M.B., Clarke, J., Newitt, D., Wald, L. L., Hahn, E. L., Bielecke, A. and Pines, A.(1989) Nuclear magnetic resonance with dc SQUID preamplifiers, IEEE Trans. Magn. MAG-25, 1193–1199.

    Article  ADS  Google Scholar 

  96. Sleator, T., Hahn, E. L., Heaney, M.B., Hilbert, C. and Clarke, J. (1986) Nuclear electric quadrupole induction of atomic polarization, Phys. Rev. Lett. 57, 2756–2759.

    Article  ADS  Google Scholar 

  97. Sleator, T., Hahn, E. L., Hilbert, C. and Clarke, J. (1987) Nuclear-spin noise and spontaneous emission, Phys. Rev. B. 36, 1969–1980.

    Article  ADS  Google Scholar 

  98. Fan, N. Q. and Clarke, J. (1991) Low-frequency nuclear magnetic resonance and nuclear quadrupole resonance spectrometer based on a dc superconducting quantum interference device, Rev. Sci. lnstrum. 62, 1453–1459.

    Article  ADS  Google Scholar 

  99. Hiirlimann, M.D., Pennington, C.H., Fan, N.Q., Clarke, J., Pines, A., and Hahn, E. L. (1992) Pulsed fourier-transfonn NQR of 14N with a dc SQUID, Phys. Rev. Len. 69, 684–687.

    Article  ADS  Google Scholar 

  100. For an elementary review on gravity waves, see Shapiro, S. L., Stark, R.F. and Teukolsky, S. J. (1985) The search for gravitational waves, Am.Sci. 73, 248–257.

    ADS  Google Scholar 

  101. For a review on gravity-wave antennae, see Michelson, P. F., Price, J. C. and Taber, R. C. (1987) Resonant-mass detectors of gravitational radiation, Science 237, 150–157.

    Article  ADS  Google Scholar 

  102. Paik, H. J. (1981) Superconducting tensor gravity gradiometer with SQUID readout, in H. Weinstock and W. C. Overton, Jr. (eds.), SQUID Applications to Geophysics, Soc. of Exploration Geophysicists, Tulsa, Oklahoma, pp. 3–12.

    Google Scholar 

  103. Mapoles, E. (1972) A superconducting gravity gradiometer, in H. Weinstock and W. C. Overton, Jr. (eds.), SQUID Applications to Geophysics, Soc. of Exploration Geophysicists, Tulsa, Oklahoma, pp. 153–157.

    Google Scholar 

  104. For a review, see K. Vozoff, (1972) The Magnetotelluric Method in the Exploration of Sedimentary Basins, Geophysics 37, 98–114.

    Article  ADS  Google Scholar 

  105. Gamble, T. D., Goubau, W. M., and Clarke, J. (1979) Magnetotellurics with a Remote Magnetic Reference, Geophysics 44, 53–68.

    Article  ADS  Google Scholar 

  106. Gamble, T. D., Goubau, W. M., and Clarke, J. (1979) Error Analysis for Remote Reference Magnetotellurics, Geophysics 44, 959–968.

    Article  ADS  Google Scholar 

  107. Koch, R. H., Umbach, C. P., Clark, G. J., Chaudhari, P., and Laibowitz, R. B. (1987) Quantum interference devices made from superconducting oxide thin films, Appl. Phys. Lett. 51, 200–202.

    Article  ADS  Google Scholar 

  108. Face, D. W., Graybeal, J. M., Orlando, T. P., and Rudman, D. A. (1990) Noise and dc characteristics of thin-film Bi-Sr-Ca-Cu-oxide dc SQUIDs, Appl. Phys. Lett. 56, 1493–1495.

    Article  ADS  Google Scholar 

  109. Koch, R. H., Gallagher, W. J., Bumble, B., and Lee, W. Y. (1989) Low-noise thin-film TlBaCaCuO dc SQUIDs operated at 77K,Appl. Phys. Lett 54, 951–953.

    Article  ADS  Google Scholar 

  110. Simon, R. W., Bulman, J. B., Burch, J. F., Coons, S. B., Daly, K. P., Dozier, W. D., Hu, R., Lee, A. E., Luine, J. A., Platt, C. E., Schwarzbek, S.M., Wire, M. S., and Zani, M. J. (1991) Engineered HTS microbridges, IEEE Trans. Magn. MAG-27, 3209–3214.

    Article  ADS  Google Scholar 

  111. Jia, C. L., Kabius, B., Urban, K., Hernnan, K., Cui, G. J., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C. (1991) Microstructure of epitaxial YB a2Cu3O7 films on step-edge SrTiO3 substrates, Physica C 175, 545–554.

    Article  ADS  Google Scholar 

  112. Ditos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K. (1988) Orientation dependence of grain-boundary critical currents in YB2Cu3O7-δ bicrystals, Phys. Rev. Lett. 61, 219–222.

    Article  ADS  Google Scholar 

  113. Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G. (1991) Biepitaxial grain boundary junctions in YB2Cu3O7, Appl. Phys. Lea. 59, 733–735.

    Article  ADS  Google Scholar 

  114. Laibowitz, R. B., Koch, R. H., Gupta, A., Koren, G., Gallagher, W. J., Foglietti, V., Oh, B., and Viggiano, J. M. (1990) All high-Tc edge junctions and SQUIDS, Appl. Phys. Lett. 56, 686–688.

    Article  ADS  Google Scholar 

  115. Schwarz, D. B., Nankiewich, P. M., Howard, R. E., Jackel, L. D., Straughn, B. L., Burhat, E. G, and Dayem, A. H. (1989) The observation of the ac Josephson effect in a Yba2Cu3O7/Au/Yba2Cu3O7 junction, IEEE Trans. Magn. MAG-25, 1298–1300.

    Article  ADS  Google Scholar 

  116. Dilorio, M. S., Yoshizumi, S. Yang, K-Y, Yang, J., and Maung, M. (1991) Practical high-Tc Josephson junctions and dc SQUIDs operating above 85K, Appl. Phys. Lett. 58, 2552–2554.

    Article  ADS  Google Scholar 

  117. Rogers, C. T., Inam, A., Hedge, M. S., Dutta, B., Wu, X. D., and Venkatesan, T. (1989)Fabrication of heteroepitaxial YB2Cu3O7-x-PrBa2CU O7-x-YB2Cu3O7-xJosephson devices grown by laser deposition, Appl. Phys. Lett. 55, 2032–2034.

    Article  ADS  Google Scholar 

  118. Kupriyanov, Yu M., and Likharev, K. K. (1991) Towards the quantitative theory of the high-Tc Josephson junctions, IEEE Trans. Magn. MAG-27, 2460–2463

    Google Scholar 

  119. Beasley, M. R. (1991) Tunneling and proximity effect studies of the high temperature superconductors, Physica C 185–189, 227–233.

    Article  ADS  Google Scholar 

  120. Gainer, J. B., Rogers, C. T., Inaur, A., Ramesh, R., and Gersey, S. (1991) All a-axis oriented YBa2Cu3O7-y-PrBa2Cu3O7-x-YBa2Cu3O7-y Josephson devices operating at 80K, Appl. Phys. Lett. 59, 742–744.

    Article  ADS  Google Scholar 

  121. Gao, J., Aarnink, W. A. M., Gerritsma, G. J., Veldhuis, D., and Rogalla, H. (1991) Preparation and properties of all high-Tc SNS-type edge dc SQUIDs, IEEE Trans. Magn. MAG-27, 3062–3065.

    Article  ADS  Google Scholar 

  122. Zani, M. J., Luine, J. A., Simon, R. W., and Davidheiser, R. A. (1991) Focused ion beam high-Tc superconductor dc SQUIDs, Appl. Phys. Lett. 59, 234–236.

    Article  ADS  Google Scholar 

  123. Tinchev, S. S., Cui, G., Zhang, Y., Buchal, Ch., Schubert, J., Zander, W., Heniiann, K., Sodtke, E.,Braginski, A. I., and Heiden, C. (1990) Properties of rf-SQUIDs fabricated from epitaxial YBCO films, LT-19 Satellite Conference on High Temperature Superconductors, Cambridge, England, August 1990 (unpublished).

    Google Scholar 

  124. Robbes, D., Miklich, A. H., Kingston, J. J., Lerch, Ph., Wellstood, F. C., and Clarke, J. (1990) Josephson weak links in thin films of YBa2Cu3O7-x induced by electrical pulses, Appl. Phys. Lett. 56, 2240–2242; erratum 57, 1169.

    Article  ADS  Google Scholar 

  125. Lee, L.P., Longo, J., Vinetskiy, V., and Cantor J. (1995) Low noise Yba2Cu3O7-δdirect-current superconducting quantum interference device magnetometer with direct signal injection, Appl. Phys. Lett. 66, 1539–1541.

    Article  ADS  Google Scholar 

  126. Char, K, Antognazza, L, and Geballe, T.H. (1993) Study of interface resistances in epitaxial YBa2Cu3O7-x/barrier/YBa2Cu3O7-x junctions, Appl. Phys. Lett. 63, 2420–2422; Verhoeven

    Article  ADS  Google Scholar 

  127. Martin A. J., Gerritsma, Gerrit J., Regalia, Horst, and Golubov, Alexander A. (1995) Ramp type HTS Josephson junctions with PrBaCuGaO barriers, IEEE Trans. Appl. Supercond. 5, 2095–2098;

    Article  Google Scholar 

  128. Faley, M.I., Poppe, U., Jia, C.L., Dh§áe, U., Goncharov, Yu, Klein, N., Urban, K., Glyantsev, V.N., Kunkel, G., Siegel, M. (1995) Application of Josephson edge type junctions with a PrBa2Cu3O7 barrier prepared with Br-etthanol etching or cleaning, IEEE Trans. Appl. Supercond. 5, 2608–2611;

    Article  Google Scholar 

  129. Satoh, T., Kukpriyanov, M. Yu., Tsai, J.S., Hidaka, M., and Tsuge, H. Resonant tunneling transport in YBaCuO/PrBaCuO/YBaCuO edge-type Josephson junctions, IEEE Trans. Appl. Supercond. 5, 2612–2615.

    Google Scholar 

  130. Enpuku, K., Shimomura, Y., and Kisu, T. (1993) Effect of thermal noise on the characteristics of a high-Tc superconducting quantum interference device, J. Appl. Phys. 73, 7929–7934.

    Article  ADS  Google Scholar 

  131. For example: Koch, R. H., Eidelloth, W., Oh, B., Robertazzi, R.P., Andrek, S.A., and Gallagher, W. J. (1992) Identifying the source of 1/f noise in SQUIDs made from high-temperature superconductors, Appl. Phys. Lett. 60, 507–509; Keene, M. N., Satchell, J. S., Goodyear, S. W., Humphreys, R. G., Edwards, J. A., Chew, N. G., and Lander, K. (1995) Low noise HTS gradiometers and magnetometers constructed from YB2Cu3O7-x/PrBa2Cu3O7-y thin films, IEEE Trans. Appl. Supercond. 5, 2923–2926.

    Google Scholar 

  132. Koelle, D., Miklich, A.H., Ludwig, F., Dantsker, E., Nemeth, D.T., and Clarke, J. (1993) DC SQUID magnetometers from single layers of YBa2Cu3O7Appl. Phys. Lett. 63, 2271–2273.

    Article  ADS  Google Scholar 

  133. Koelle, D., Miklich, A. H., Dantsker, E., Ludwig, F., Nemeth, D. T., Clarke, J., Ruby, W.and Char, K. (1993) High performance do SQUID magnetometers with single layer YB2Cu3O7-x flux transformers, Appl. Phys. Lett. 63, 3630–3632.

    Article  ADS  Google Scholar 

  134. Cantor, R., Lee, L.P., Teepe, M., Vinetskiy, V., and Longo, J. (1995) Low-noise, single-layer YB2Cu3O7-x dc SQUID magnetometers at 77K, IEEE Trans. Appl. Supercond. 5, 2927–2930.

    Article  Google Scholar 

  135. Ludwig, F., Koelle, D., Dantsker, E., Nemeth, D. T., Miklich, A. H., Clarke, John and Thomson, R. E. (1995) Low noise YBa2Cu3O7-x/SrTiO3/YBa2Cu3O7-x multilayers for improved superconducting magnetometers, Appl. Phys. Lett. 66, 373–375.

    Article  ADS  Google Scholar 

  136. Zimmerman, J. E. (1971) Sensitivity enhancement of superconducting quantum interference devices through the use of fractional-turn loops, J. Appl. Phys. 42, 4483–4487.

    Article  ADS  Google Scholar 

  137. Drung, D., Cantor, R., Peters, M., Scheer, H. J., and Koch H. (1990) Low-noise highspeed dc superconducting quantum interference device magnetometer with simplified feedback electronics, Appl. Phys. Lett. 57, 406–408.

    Article  ADS  Google Scholar 

  138. Drung, D., Cantor, R., Peters, M., Rhyänen, T., and Koch H. (1991) Integrated dc SQUID magnetometer with high dV/dB, IEEE Trans. Magn. MAG-27, 3001–3004.

    Article  ADS  Google Scholar 

  139. Drung, D., Knappe, S., and Koch, H. (1995) Theory for the multiloop do superconducting quantum interference device magnetometer and experimental verification J. Appl. Phys. 77, 4088–4098.

    Article  ADS  Google Scholar 

  140. Ludwig, F., Dantsker, E., Kleiner, R., Koelle, D., Clarke, John, Knappe, S., Drung, D., Koch, H., Alford, Neil McN., and Button, T.W. (1995) Integrated high-Tv multiloop magnetometer, Appl. Phys. Lett. 66, 1418–1420.

    Article  ADS  Google Scholar 

  141. Button, T. W., Alford, N. McN., We11hofer, F., Shields, T. C., Abell, F. S. and Day, M. (1991) The processing and properties of high-Tc thick films, IEEE Trans. Magn. MAG-27, 1434–1437.

    Article  ADS  Google Scholar 

  142. Ludwig, F., Dantsker, E., Koelle, D., Kleiner, R., Miklich, A. H., Nemeth, D. T., Clarke, John, Drung, D., Knappe, S., and Koch, H. (1995) High-Tc multilayer magnetometers with improved 1/f noise, IEEE Trans. Appl. Supercond. 5, 2919–2922.

    Article  Google Scholar 

  143. Dantsker, E., Ludwig, F., Kleiner, R., Clarke, John, Teepe, M., Lee, L. P., Alford, Neil McN., and Button, T. (1995) Addendum: Low noise YBa2Cu3O7-x /SrTiO3/YBa2Cu3O7-x multilayers for improved superconducting magnetometers, Appl. Phys. Lett. 67, 725–726.

    Article  ADS  Google Scholar 

  144. Lee, L. P., Char, K., Colclough, M. S., Zaharchuk, G. (1991) Monolithic 77K dc SQUID magnetometer, Appl. Phys. Lett. 59, 3051–3053.

    Article  ADS  Google Scholar 

  145. David, B., Grundler, D., Krumme, J.-P., and Dösel, O. (1995) Integrated high-Tv SQUID magnetometer, IEEE Trans. Appl. Supercond. 5, 2935–2938.

    Article  Google Scholar 

  146. Hilgenkamp, J. W. M., Brons, G. C. S., Soldevilla, J. G., Isselsteijn, R. P., Flokstra, J., and Rogalla, H. (1994) Four layer monolithic integrated high-Tc SQUID magnetometer Appl. Phys. Lett. 64, 3497–3499.

    Article  ADS  Google Scholar 

  147. Dössel, O., David, B., Eckart, R., Grundler, D., and Krey, S. (1995) High-Tc SQUID magnetometers for magnetocardiography, in Dave H. A. Blank (ed.), Proceedings of the HTS Workshop on Applications and New Materials,University of Twente, Enschede, pp. 124–130.

    Google Scholar 

  148. Kromann, R., Kingston, J. J., Miklich, A. H., Sagdahl, L. T., and Clarke, John (1993) Integrated high-transition temperature magnetometer with only two superconducting layers, Appl. Phys. Lett 63, 559–561.

    Article  ADS  Google Scholar 

  149. Zhang, Y., Miick, M., Herrmann, K., Schubert, J., Zander, W., Braginski, A., and Heiden, C., (1992) Low noiseYBa2Cu3O7-x rf SQUID magnetometer, Appt. Phys. Lett. 60, 645–647.

    Article  ADS  Google Scholar 

  150. Zhang, Y., Miick, M., Herrmann, K., Schubert, J., Zander, W., Braginski, A., and Heiden, C., (1992) Microwave rf SQUID integrated into a planar YB2Cu3O7-x, Appl. Phys. Lett. 60, 2303–2305.

    Article  ADS  Google Scholar 

  151. Ketchen, M. B., Gallagher, W. J., Kleinsasser, A. W., Murphy, S., and Clem, J. R. (1985) DC SQUID flux focuser, in H.D. Hahlbohm and H. Liibbig (eds), Proceedings of SQUID ‘85, Berlin, pp. 865–871.

    Google Scholar 

  152. Zhang, Y., Kruger, U., Kutzner, R., Wördenweber, R., Schubert, J., Zander, W., Stropp, M., Sodtke, E., and Braginski, A.I. (1994) Single layer YBa2Cu3O7 radio frequency SQUID magnetometers with direct-coupled pickup coils and flip-chip flux transformers, Appl. Phys. Lett. 65, 3380–3382.

    Article  ADS  Google Scholar 

  153. Ferrari, M. J., Johnson, M., Wellstood, F. C., Clarke, J., Rosenthal, P. A., Hammond, R. H., and Beasley, M. R. (1988) Magnetic flux noise in thin-film rings of YB2Cu3O7-δ, Appl. Phys. Lett. 53, 695–697.

    Article  ADS  Google Scholar 

  154. Ferrari, M. J., Johnson, M., Wellstood, F. C., Clarke, J., Inam, A., Wu, X. D., Nazar, L., and Venkatesan, T. (1989) Low magnetic flux noise observed in laser-deposited in situ films of Yba2Cu3Oy and implications for high-Tc SQUIDs, Nature 341, 723–725.

    Article  ADS  Google Scholar 

  155. Ferrari, M. J., Johnson, M., Wellstood, F. C., Clarke, J., Mitzi, D., Rosenthal, P. A., Eom, C. B., Geballe, T. H., Kapitulnik, A., and Beasley, M. R. (1990) Distribution of flux-pinning in YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ from flux noise, Phys. Rev. Lett. 64, 72–75.

    Article  ADS  Google Scholar 

  156. Koch, R. H., Sun, J. Z., Foglietti, V., and Gallagher, W. J. (1995) Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field, Appl. Phys. Lett. 67, 709–711.

    Article  ADS  Google Scholar 

  157. Miklich, A. H., Koelle, D., Ludwig, F., Nemeth, D. T., Dantsker, E., and Clarke, John (1995) Picovoltmeter based on a high transition temperature SQUID, Appl. Phys. Lett. 66, 230–232.

    Article  ADS  Google Scholar 

  158. Dantsker, E., Koelle, D., Miklich, A. H., Nemeth, D. T., Ludwig, F., Clarke, John, Longo, J. T., and Vinetskiy, V. (1994) High-Tc three-axis dc SQUID magnetometers for geophysical applications, Rev. Sci. Instrum. 65, 3809–3813.

    Article  ADS  Google Scholar 

  159. Black, R. C., Wellstood, F. C., Dantsker, E., Miklich, A. H., Koelle, D., Ludwig, F., and Clarke, J. (1995) High frequency magnetic microscopy using a high-Tc SQUID, IEEE Trans. Appl. Sup. 5, 2137–2141.

    Article  Google Scholar 

  160. Kado, H. (1994) Applied Superconductivity Conference, Boston, MA, October 1994 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clarke, J. (1996). Squid Fundamentals. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics