Skip to main content

Potential therapeutic use of antibodies directed towards HuIFN-γ

  • Chapter
Antibodies in Cytokines
  • 89 Accesses

Abstract

IFN-γ is an important regulator of immune responses and inflammation. Studies in animal models of inflammation, autoimmunity, cancer, transplant rejection and delayed-type hypersensitivity have indicated that administration of antibodies against IFN-γ can prevent the occurrence of diseases or alleviate disease manifestations. Therefore, it is speculated that such antibodies may have therapeutical efficacy in human diseases. Since animal-derived antibodies are immunogenic in patients several strategies are being developed in order to reduce or abolish this human anti-mouse antibody (HAMA) response. In our laboratory, we have constructed a single-chain variable fragment (scFv) derived from a mouse antibody with neutralizing potential for human IFN-γ. A scFv consists of only variable domains tethered together by a flexible linker. The scFv was demonstrated to neutralize the antiviral activity of HuIFN-γ in vitro and therefore might be considered as a candidate for human therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ab:

antibody

EAE:

experimental allergic encephalomyelitis

GVH:

graft-versus-host

HAMA:

human anti-mouse antibody

HuIFN-γ:

human interferon-gamma

IL:

interlukin

LPS:

lipopolysaccharide

mAb:

monoclonal antibody

MHC:

major histocompatability complex

scFv:

single-chain antibody variable fragment

SLE:

systemic lupus erythematosus

TNF:

tumor necrosis factor

References

  1. Finbloom DS, Wahl LM, Winestock KD. The receptor of interferon-γ on human peripheral blood monocytes consists of muntiple distinct units. J Biol Chem 1991; 266: 22545–22548.

    PubMed  CAS  Google Scholar 

  2. Taniguchi T. Cytokine signalling through nonreceptor protein tyrosine kinases. Science 1995; 268: 251–255.

    Article  PubMed  CAS  Google Scholar 

  3. Dijkmans R, Billiau A. Interferon-γ: a master key in the immune system. Curr Opin Biol 1988; 1: 269–274.

    CAS  Google Scholar 

  4. Froyen G, Heremans H, Dijkmans R, Billiau A. Apparent auto-inhibition of murine interferon-γ due to a serum component. In: Cantell K, Schellekens H, eds. The Biology of the Interferon System. Martinus Nijhoff Publishers, 1986:45–50.

    Google Scholar 

  5. Turano A, Balsari A, Viani E, Landolfo S, Zanoni L, Gargiulo F, Caruso A. Natural human antibodies to 7 interferon interfere with the immunomodulating activity of the lymphokine. Proc Natl Acad Sci USA 1992; 89: 4447–4451.

    Article  PubMed  CAS  Google Scholar 

  6. Hamilton RG. Monoclonal antibodies in the diagnosis and treatment of human diseases. Ann Biol Clin 1989; 47: 575–581.

    CAS  Google Scholar 

  7. Waldmann T. Monoclonal antibodies in diagnosis and therapy. Science 1991; 252: 1657–1662.

    Article  PubMed  CAS  Google Scholar 

  8. Heremans H, Dijkmans R, Sobis H, Vandekerckhove F, Billiau A. Regulation by interferons of the local inflammatory response to bacterial lipopolysaccharide. J Immunol 1987; 138: 4175–4179.

    PubMed  CAS  Google Scholar 

  9. Billiau A, Heremans H, Vandekerckhove F, Dillen C. Antiinterferon γ antibody protects mice against the generalized Shwartzman reaction. Eur J Immunol 1987; 17: 1851–1854.

    Article  PubMed  CAS  Google Scholar 

  10. Heremans H, Van Damme J, Dillen C, Dijkmans R, Billiau A. Interferon-γ, α mediator of lethal lipopolysaccharide-induced Shwartzman-like shock reactions in mice. J Exp Med 1990; 171: 1853–1869.

    Article  PubMed  CAS  Google Scholar 

  11. Geiger K, Howes E, Gallina M, Huang XJ, Travis GH, Sarvetnick N. Transgenic mice expressing IFN-gamma in the retina develop inflammation of the eye and photoreceptor loss. Invest Opthalmol Vis Sci 1994; 35: 2667–2681.

    CAS  Google Scholar 

  12. Matthys P, Dillen C, Proost P, Heremans H, Van Damme J, Billiau A. Modification of the anti-CDS-induced cytokine release syndrome by anti-interferon-7 or anti-interleukin-6 antibody treatment: protective effects of biphasic changes in blood cytokine levels. Eur J Immunol 1993; 23: 2209–2216.

    Article  PubMed  CAS  Google Scholar 

  13. Matthys P, Mitera T, Heremans H, Van Damme J, Billiau A. Anti-gamma interferon and anti-interleukin-6 antibodies affect Staphylococcal enterotoxin B-induced weight loss, hypoglycemia, and cytokine release in D-galactosamine-sensitized and unsensitized mice. Infect Immun 1995; 63: 1158–1164.

    PubMed  CAS  Google Scholar 

  14. Jarpe MA, Hayes MP, Russell JK, Johnson HM, Russell SW. Causal association of interferon-γ with tumor regression. J Interferon Res 1989; 9: 239–244.

    Article  PubMed  CAS  Google Scholar 

  15. Prat M, Bretti S, Amedeo M, Landolfo S, Comoglio PM. Monoclonal antibodies against murine IFN-γ abrogate in vivo tumor immunity against RSV-induced cytotoxic T lymphocyte differentiation. J Immunol 187; 138: 4530–4533.

    Google Scholar 

  16. Watanabe Y, Kuribayashi K, Miyatake S, Nishihara E, Nakayama E Taniyama T, Sakata TA. Endogenous expression of mouse interferon γ cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity and augmented anti-tumor immunity. Proc Natl Acad Sci USA 1989; 86: 9456–9460.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrantini M, Giovarelli M, Modesti A, Musiani P, Modica A, Venditti M, Peretti E, Lollini P, Nanni P, Forni G, Belardelli F. IFN-α 1 gene expression into a metastatic murine adenocarcinoma (TS/A) results in CD8+ T cell-mediated tumor rejection and development of antitumor immunity: Comparative studies with IFN-gamma-producing TS/A cells. J Immunol 1994; 153: 4604–4615.

    PubMed  CAS  Google Scholar 

  18. Matthys P, Heremans H, Opdenakker G, Billiau A. AntiIFN-γ antibody treatment, growth of Lewis lung tumours in mice and tumour-associated cachexia. Eur J Cancer 1991; 27: 182–187.

    Article  PubMed  CAS  Google Scholar 

  19. Ramani P, Balkwill FR. Enhanced metastasis of a mouse carcinoma after in vitro treatment with interferon-γ. Int J Cancer 1987; 40: 830–834.

    Article  PubMed  CAS  Google Scholar 

  20. Langstein HN, Doherty GM, Fraker DL, Buresh CM, Norton JA. The roles of γ-interferon and tumor necrosis factor in an experimental rat model of cancer cachexia. Cancer Research 1991;51:2302–2306.

    PubMed  CAS  Google Scholar 

  21. Matthys P, Dijkmans R, Proost P, Van Damme J, Heremans H, Sobis H, Billiau A. Severe cachexia in mice inoculated with interferon-γ-producing cells. Int J Cancer 1991; 49: 77–82.

    Article  PubMed  CAS  Google Scholar 

  22. Duong TT, St Louis J, Gilbert JJ, Finkelman FD, Strejan GH. Effect of anti-interferon-γ and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J Neuroimmunol 1992; 36: 105–115.

    Article  PubMed  CAS  Google Scholar 

  23. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 1988; 140: 1506–1510.

    PubMed  CAS  Google Scholar 

  24. Hirsch RL, Panitch HS, Johnson KP. Lymphocytes from multiple sclerosis patients produce elevated levels of gamma interferon in vitro. J Clin Immunol 1985; 5: 386–389.

    Article  PubMed  CAS  Google Scholar 

  25. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: Do cytokines trigger off exacerbations? Acta Neurol Scand 1988; 78: 318–323.

    Article  PubMed  CAS  Google Scholar 

  26. Panitch HS, Haley AS, Hirsch RL, Johnson KP, Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; i:893–895.

    Article  Google Scholar 

  27. Vass K, Heininger K, Schäfer B, Linington C, Lassman H. Interferon-7 potentiates antibody-mediated demyelination in vivo. Ann Neurol 1992; 32:198–206.

    Article  PubMed  CAS  Google Scholar 

  28. Jacob CO, Van der Meide PH, McDevitt HO. In vivo treatment of (NZB x NZW)F1 lupus-like nephritis with monoclonal antibody to 7 interferon. J Exp Med 1987; 166: 798–803.

    Article  PubMed  CAS  Google Scholar 

  29. Ozmen L, Roman D, Fountoulakis M, Schmid G, Ryffel B, Garotta G. Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon γ receptor inhibits the onset of glomerulonephritis. Eur J Immunol 1995; 25: 6–12.

    Article  PubMed  CAS  Google Scholar 

  30. Fountoulakis M, Schlaeger E, Gentz R, Juranville J, Manneberg M, Ozmen L, Garotta G. Purification and biological characterization of a soluble mouse interferon-γ receptor produced in insect cells. Eur J Biochem 1991; 198: 441–450.

    Article  PubMed  CAS  Google Scholar 

  31. Machold KP, Smolen JS. Interferon-γ-induced exacerbation of systemic lupus erythematosus. J Rheumatol 1990; 17: 831–832.

    PubMed  CAS  Google Scholar 

  32. Braude IA, Hochberg MC, Arnett FC, Waldmann TA. In vitro suppression of anti-DNA antibody and immunoglobulin synthesis in systemic lupus erythematosus patients by gamma interferon. J Rheumatol 1988; 15: 438–444.

    PubMed  CAS  Google Scholar 

  33. Graninger WB, Hassfeld W, Pesau BB, Machold KP, Zielinski CC, Smolen JS. Induction of systemic lupus erythematosus by interferon-γ in a patient with rheumatoid arthritis. J Rheumatol 1991; 18: 1621–1622.

    PubMed  CAS  Google Scholar 

  34. Jacob CO, Holoshitz J, Van der Meide P, Strober S, McDevitt NO. Heterogeneous effect of IFN-γ in adjuvant arthritis. J Immunol 1989; 142: 1500–1505.

    PubMed  CAS  Google Scholar 

  35. Mauritz NJ, Holmdahl R, Jonsson R, Van der Meide PH, Scheynius A, Klareskog L. Treatment with gamma-interferon triggers the onset of collagen arthritis in mice. Arthritis Rheum 1988; 31: 1297–1304.

    Article  PubMed  CAS  Google Scholar 

  36. Nakajima H, Takamori H, Hiyama Y, Tsukuda W. The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol 1990; 81: 441–445.

    Article  PubMed  CAS  Google Scholar 

  37. Machold KP, Neumann K, Smolen JS. Recombinant human interferon γ in the treatment of rheumatoid arthritis: double blind placebo controlled study. Ann Rheum Dis 1992; 51: 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  38. Cannon GW, Emkey RD, Denes A, Cohen SA, Saway PA, Wolfe F, Jaffer AM, Weaver AL, Cogen L, Gulinello J, Kennedy SM, Schindler JD. Prospective two-year followup of recombinant interferon-γ in rheumatoid arthritis. J Rheumatol 1990; 17:304–310.

    PubMed  CAS  Google Scholar 

  39. Campbell IL, Oxbrow L, Koulmanda M, Harrison LC. IFN-γ induces islet cell MHC antigens and enhance autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol 1988; 140: 1111–1116.

    PubMed  CAS  Google Scholar 

  40. Campbell IL, Kay TWH, Oxbrow L, Harrison LC. Essential role for interferon-7 and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. J Clin Invest 1991;87:739–742.

    Article  PubMed  CAS  Google Scholar 

  41. Kay TWH, Campbell IL, Oxbrow L, Harrison LC. Overexpression of class I major histocompatibility complex accompanies insulitis in the non-obese diabetic mouse and is prevented by anti-interferon-7 antibody. Diabetologia 1991; 34: 779–785.

    Article  PubMed  CAS  Google Scholar 

  42. Sarvetnick N, Shizuru J, Liggitt L, McIntyre B, Gregory A, Parslow T, Stewart T. Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma. Nature 1990; 346: 844–847.

    Article  PubMed  CAS  Google Scholar 

  43. Wogensen L, Molony L, Gu D, Krahl T, Zhu S, Sarvetnick N. Postnatal interferon-gamma treatment prevents pancreatic inflammation in transgenic mice with beta-cell expression of interferon-gamma. J Interferon Res 1994; 14: 111–116.

    Article  PubMed  CAS  Google Scholar 

  44. Rémy J-J, Salamero J, Michel-Bechet M, Charreire J. Experimental autoimmune thyroiditis induced by recombinant interferon-γ. Immunol Today 1987; 8: 73.

    Article  Google Scholar 

  45. Kawakami Y, Kuzuya N, Watanabe T, Uchiyama Y, Yamashita K. Induction of experimental thyroiditis in mice by recombinant interferon γ administration. Acta Endocrinol 1990; 122: 41–48.

    PubMed  CAS  Google Scholar 

  46. Toyonaga T, Hino O, Sugai S, Wakasugi S, Abe K, Shichiri M, Yamamura K. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci USA 1994;91:614–618.

    Article  PubMed  CAS  Google Scholar 

  47. Barker JNW, Alle MH, MacDonald DM. Alterations induced in normal human skin by in vivo interferon-gamma. Brit J Dermatol 1993; 122: 451–458.

    Article  Google Scholar 

  48. Fierlbeck G, Rassner G. Treatment of psoriasis and psoriaric arthritis with interferon gamma. J Invest Dermatol 1990; 95: 138S–141S.

    Article  PubMed  CAS  Google Scholar 

  49. Kaneko F, Suzuki M, Taniguchi Y, Itoh N, Minagawa, T. Immunohistopathologic studies in the development of psoriatic lesion influenced by gamma-interferon and the producing cells. J Dermatol Science 1990; 1; 425–434.

    Article  CAS  Google Scholar 

  50. Gu D, Wogensen L, Calcutt NA, Xia C, Zhu S, Merlie JP, Fox HS, Lindstrom J, Powell HC, Sarvetnick N. Myastenia Gravis-like syndrome induced by expression of interferon gamma in neuromuscular junction. J Exp Med 1995; 181: 547–557.

    Article  PubMed  CAS  Google Scholar 

  51. Landolfo S, Cofano F, Giovarelli M, Prat M, Cavallo G, Forni G. Inhibition of interferon-gamma may suppress allograft reactivity by T lymphocytes in vitro and in vivo. Science 1985; 229: 176–179.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenberg AS, Finbloom DS, Maniero TG, Van der Meide PH, Singer A. Specific prolongation of MHC class II disparate skin allografts by in vivo administration of anti-IFN-γ monoclonal antibody. J Immunol 1990; 144: 4648–4650.

    PubMed  CAS  Google Scholar 

  53. Mowat A. Antibodies to IFN-γ prevent immunologically mediated intestinal damage in murine graft-versus-host reaction. Immunology 1989; 68: 18–23.

    PubMed  CAS  Google Scholar 

  54. Brok HPM, Heidt PJ, Van der Meide PH, Zurcher C, Vossen J. Interferon-γ prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Immunol 1993; 151:6451–6459.

    PubMed  CAS  Google Scholar 

  55. Glassy MC, Handley HH, Surh CD, Royston I. Genetically stable human hybridomas secreting tumor reactive human monoclonal IgM. Cancer Invest 1987; 5: 447–455.

    Article  Google Scholar 

  56. Albright JF, Janicki B, Scharff MD. Generation and maintenance of hybridomas. Immunol Today 1987; 8: 256–257.

    Article  Google Scholar 

  57. James K, Bell BT. Human monoclonal antibody production. Current status and future prospects. J Immunol Methods 1987; 100: 5–40.

    Article  PubMed  CAS  Google Scholar 

  58. Koda K, Glassy MC. In-vitro immunization for the production of human monoclonal antibody. Hum Antib Hybridomas 1990; 1: 15–22.

    CAS  Google Scholar 

  59. Borrebaeck CAK. Human mAbs produced by primary in-vitro immunization. Immunol Today 1988; 9: 355–359.

    Article  PubMed  CAS  Google Scholar 

  60. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  61. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  PubMed  CAS  Google Scholar 

  62. Hoogenboom HR, Marks JD, Griffiths AD, Winter G. Building antibodies from their genes. Immunol Rev 1992; 130: 41–68.

    Article  PubMed  CAS  Google Scholar 

  63. Boulianne GL, Hozumi N, Shulman MJ. Production of functional chimaeric mouse/human antibody. Nature 1984; 312: 643–646.

    Article  PubMed  CAS  Google Scholar 

  64. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimaeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984;81:6851–6855.

    Article  PubMed  CAS  Google Scholar 

  65. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in human antibody with those from a mouse. Nature 1986; 321: 522–525.

    Article  PubMed  CAS  Google Scholar 

  66. Pimm MV, Durrant LG, Baldwin RW. The influence of syngeneic anti-idiotypic antibody on the biodistribution of an anti-tumour monoclonal antibody in BALB/c mice. Int J Cancer 1986; 43: 147–151.

    Article  Google Scholar 

  67. Brüggemann M, Winter G, Waldmann H, Neuberger MS. The immunogenicity of chimeric antibodies. J Exp Med 1989; 170: 2153–2157.

    Article  PubMed  Google Scholar 

  68. LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayeb J, Khazaeli MB. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 1989; 86: 4220–4224.

    Article  CAS  Google Scholar 

  69. Knox SJ, Levy R, Hodgkinson S, Bell R, Brown S, Wood GS, Hoppe R, Abel, E.A., Steinman, L., Berger, R.G., Gaiser, C., Young, G., Bindl, J., Hanham A, Reichert T. Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with Mycosis fungoides. Blood 1991; 77: 20–30.

    PubMed  CAS  Google Scholar 

  70. Hale G, Dyer MJS, Clark MR, Phillips JM, Marcus R, Riechmann L, Winter G, Waldmann H. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-IH. Lancet 1988; ii: 1394–1399.

    Article  Google Scholar 

  71. Mathieson PW, Cobbold SP, Hale G, Clark MR, Oliviera DBG, Lockwood CM, Waldmann H. Monoclonal antibody therapy in systemic vasculitis. New Engl J Med 1990; 323: 250–254.

    Article  PubMed  CAS  Google Scholar 

  72. Co MS, Queen C. Humanized antibodies for therapy. Nature 1991;351:501–502.

    Article  PubMed  CAS  Google Scholar 

  73. Caron PC, Schwartz MA, Co MS, Queen C, Finn RD, Graham MC, Divgi CR, Larson SM, Scheinberg DA. Murine and humanized constructs of monoclonal antibody M195 (anti-CD33) for the therapy of acute myelogenous leukemia. Cancer 1994; 73: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  74. Neuberger MS, Williams GT, Fox RO. Recombinant antibodies possessing novel effector functions. Nature 1984; 312: 604–608.

    Article  PubMed  CAS  Google Scholar 

  75. Sharon J, Gefter ML, Manser T, Morrison SL, Oi VT, Ptashne M. Expression of a VHCK chimaeric protein in mouse myeloma cells. Nature 1984; 309: 364–367.

    Article  PubMed  CAS  Google Scholar 

  76. Riechmann L, Foote J, Winter G. Expression of an antibody Fv fragment in myeloma cells. J Mol Biol 1988; 203: 825–828.

    Article  PubMed  CAS  Google Scholar 

  77. Skerra A, Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988; 240: 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  78. Better M, Chang CP, Robinson RR, Horwitz AH. Escherichia coli secretion of an active chimeric antibody fragment. Science 1988; 240: 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  79. Huston JS, Levinston D, Mudgett-Hunter M, Tai M-S, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, Oppermann H. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85: 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  80. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee S, Pope SH, Riordan GS, Whitlow M. Single-chain antigen-binding proteins. Science 1988; 242: 423–426.

    Article  PubMed  CAS  Google Scholar 

  81. Burton DR. Human and mouse monoclonal antibodies by repertoire cloning. Tibtech 1991; 9: 169–175.

    Article  CAS  Google Scholar 

  82. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991;222:581–597.

    Article  PubMed  CAS  Google Scholar 

  83. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348: 552–554.

    Article  PubMed  CAS  Google Scholar 

  84. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M., Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989; 246: 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  85. Hawkins RE, Winter G. Cell selection strategies for making antibodies from variable gene libraries: Trapping the memory pool. Eur J Immunol 1992; 22: 867–870.

    Article  PubMed  CAS  Google Scholar 

  86. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, Abderrahim H, Noguchi M, Smith DH, Zeng Y, David NE, Sasai H, Garza D, Brenner DG, Hales JF, McGuinness RP, Capon DJ, Klapholz S, Jakobovits A. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genetics 1994; 7: 13–21.

    Article  PubMed  CAS  Google Scholar 

  87. Duchosal MA, Eming SA, Fischer P, Lerurcq D, Barbas III CF, McConahey PJ, Caothien RH, Thornton GB, Dixon FJ, Burton DR. Immunization of hu-PBL-SCID mice and the rescue of human monoclonal Fab fragments through combinatorial libraries. Nature 1992; 355: 258–262.

    Article  PubMed  CAS  Google Scholar 

  88. Sandvig S, Laskay T, Andersson J, De Ley M, Andersson U. Gamma-interferon is produced by CD3+ and CD3-lymphocytes. Immunol Rev 1987; 97: 51–65.

    Article  PubMed  CAS  Google Scholar 

  89. Huston JS, McCartney J, Tai M-S, Mottola-Hartshom C, Jin D, Warren F, Keck P, Oppermann H. Medical applications of single-chain antibodies. Intern Rev Immunol 1993; 10: 195–217.

    Article  CAS  Google Scholar 

  90. Bird RE, WebbWalker B. Single-chain antibody variable regions. Tibtech 1991; 9: 132–137.

    Article  CAS  Google Scholar 

  91. Froyen G, Ronsse I, Billiau A. Bacterial expression of a single-chain antibody fragment (scFv) that neutralizes the biological activity of human interferon-γ. Mol Immunol 1993;30:805–812.

    Article  PubMed  CAS  Google Scholar 

  92. Orlandi R, Gussow DH, Jones PT, and Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci USA 1989; 86: 3833–3837.

    Article  PubMed  CAS  Google Scholar 

  93. Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989; 341: 544–546.

    Article  PubMed  CAS  Google Scholar 

  94. Froyen G, Hendrix D, Ronsse I, Fiten P, Martens E, Billiau A. Effect of VH and VL consensus sequence specific primers on the binding and neutralizing potential of a single-chain Fv directed towards HuIFN-γ. Mol Immunol 1995; 32: 515–521.

    Article  PubMed  CAS  Google Scholar 

  95. Kwok AYC, Zu X, Yang C, Alfa MJ, Jay FT. Human interferon-γ has three domains associated with its antiviral function: a neutralizing epitope typing scheme for human interferon-γ. Immunol 1993; 78: 131–137.

    Google Scholar 

  96. Ziai MR, Imberti L, Kobayashi M, Perussia B, Trinchieri G, Ferrone S. Distinct functional domains on the recombinant human immune interferon molecule. Cancer Res 1986; 46: 6187–6190.

    PubMed  CAS  Google Scholar 

  97. Van Damme J, Proost P, Put W, Arens S, Lenaerts J-P, Conings R, Opdenakker G, Heremans H, Billiau A. Induction of monocyte chemotactic proteins MCP-1 and MCP-2 in human fibroblasts and leukocytes by cytokines and cytokine inducers: Chemical synthesis of MCP-2 and development of a specific RIA. J Immunol 1994; 152: 5495–5502.

    PubMed  CAS  Google Scholar 

  98. Lundell DJ, Narula SK. Structural elements required for receptor recognition of human interferon-gamma. Pharmac Ther 1994; 64: 1–21.

    Article  CAS  Google Scholar 

  99. Klein B, Brailly H. Cytokine-binding proteins: stimulating antagonists. Immunol Today 1995; 16: 216–220.

    Article  PubMed  CAS  Google Scholar 

  100. Adair JR. Engineering antibodies for therapy. Immunol Rev 1992; 130: 5–40.

    Article  PubMed  CAS  Google Scholar 

  101. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 1993; 259: 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  102. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M. Immune response in mice that lack the interferon-γ receptor. Science 1993; 259: 1742–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Froyen, G., Billiau, A. (1997). Potential therapeutic use of antibodies directed towards HuIFN-γ. In: Schellekens, H. (eds) Antibodies in Cytokines. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5664-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5664-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6388-3

  • Online ISBN: 978-94-011-5664-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics