Skip to main content

High bacterial production in hypertrophic shallow reservoirs rich in humic substances

  • Chapter
Shallow Lakes ’95

Part of the book series: Developments in Hydrobiology ((DIHY,volume 119))

  • 645 Accesses

Abstract

Two reservoirs, constructed for pollution control in the catchment area of Lake Balaton, were studied. Both are hypertrophic due to high phosphorus loading, and both are rich in dissolved humic substances (colour in Pt units usually varies between 50–150 Pt, mg 1_1) as they were built on former wetland areas. We measured planktonic primary production with 14C technique, and bacterioplankton production using the [methyl-3H]thymidine incorporation method. The levels of dissolved organic carbon (DOC) and humic substances (as water colour) present were investigated. Temperature, pH and light intensity at different depths were recorded regularly. In both reservoirs studied the bacterioplankton production was as high as the phytoplankton production and in some cases significantly exceeded it. Dissolved humic substances proved to be an important substrate for planktonic bacteria in these water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humic concentration in southern Finland. Holarct. Ecol. 7: 390–398.

    CAS  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh-and saltwater ecosystems: a cross overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Cuthbert, I. D. & P. del Giorgio, 1992. Toward a standard method of measuring colour in freshwater. Limnol. Oceanogr. 37: 1319–1326.

    Article  CAS  Google Scholar 

  • Fisher, R. A., 1963. Statistical Tables for Biological, Agricultural and Medical Research. 7th edn. Oliver-Boyd, London, 146 pp.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Gjessing, E. T., 1976. Physical and Chemical Characteristics of Aquatic Humus. Ann. Arbor Science Publ., Ann Arbor Michigan, 120 pp.

    Google Scholar 

  • Hessen, D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microb. Ecol. 31: 215–223.

    Article  CAS  Google Scholar 

  • Johansson, J. Å., 1983. Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 91: 71–87.

    Article  Google Scholar 

  • Kirk, J. T. O., 1976. Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal south-eastern Australian waters. Aust. J. mar. Freshwat. Res. 27: 61–71.

    Article  Google Scholar 

  • Larsson, U. & Å. Hagström, 1982. Fractionated phytoplankton primary production exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Article  Google Scholar 

  • Lavandier, P., 1990. Dynamics of bacterioplankton in a mesotrophic French reservoir (Pareloup). Hydrobiologia 207: 79–86.

    Article  CAS  Google Scholar 

  • Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass on naturally derived marine bacterioplankton. Appl. envir. Microbiol. 53: 1298–1303.

    CAS  Google Scholar 

  • Lindell, M. J., W. Granéli. & L. J. Tranvik, 1995. Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol. Oceanogr. 40: 195–199.

    Article  Google Scholar 

  • Lowell, C. R. & A. Konopka, 1985. Primary and bacterial production in two dimictic Indiana lakes. Appl. envir. Microbiol. 49: 485–491.

    Google Scholar 

  • Meyer, J. L., C. M. Tate, R. T. Edwards & M. T. Crocker, 1987. The trophic significance of dissolved organic carbon in streams. In Swank, W. T. & D. A. Crossley (eds), Forest Hydrology and Ecology at Coweeta. Springer-Verlag, New York: 269–278.

    Google Scholar 

  • Peuravuori, J. & K. Pihlaja, 1991. Isolation and fractionation of humic substances in lake waters. In Allard, B., H. Borén & A. Grimvall (eds), Humic Substances in the Aquatic and Terrestrial Environment. Springer: 123–134.

    Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic lake Pääjärvi 3. Secondary production and en ecological energy budget of the lake. Verh. int. Ver. Limnol. 21: 454–459.

    Google Scholar 

  • Schindler, D. W., S. E. Bayley, P. J. Curtis, B. R. Parker, M. P. Stainton & C. A. Kelly, 1992. Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precamprian shield lakes. Hydrobiologia 229: 1–21.

    Article  CAS  Google Scholar 

  • Sieburth, J. McN. & A. Jensen, 1968. Studies on algal substances in the sea. I. Gelbstoff (humic material) in terrestrial and marine waters. J. exp. mar. Biol. Ecol. 2: 174–189.

    Article  CAS  Google Scholar 

  • Steinberg, C. & U. Münster, 1985. Geochemistry and ecological role of humic substances in lakewater. In Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. Maccarthy (eds), Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York: 105–145.

    Google Scholar 

  • Thienemann, A., 1925. Die Binnengewässer Mitteleuropas. Binnengewässer 1, 255 pp.

    Google Scholar 

  • Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr W. Junk Publishers, Boston, 350 pp.

    Book  Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton in humic lakes— a link between allochthonous organic matter and pelagic food webs. Dissertation, Lund, 104 pp.

    Google Scholar 

  • Vollen weider, R. A., 1969. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handb. 12. Blackwell Sci. Publ., Oxford, 225 pp.

    Google Scholar 

  • Webb, W. L., M. Newton & D. Starr, 1974. Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologia 17: 281–291.

    Article  Google Scholar 

  • Wetzel, R. A. & G. E. Likens, 1990. Limnological Analyses. 2nd edn. Springer Verlag, New York, 391 pp.

    Google Scholar 

  • Vörös, L., K. V.-Balogh & S. Herodek, 1996. Microbial food web in a large shallow lake Lake Balaton, Hungary Hydrobiologia 339: 57–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lech Kufel Andrzej Prejs Jan Igor Rybak

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

V.-Balogh, K., Vörös, L. (1997). High bacterial production in hypertrophic shallow reservoirs rich in humic substances. In: Kufel, L., Prejs, A., Rybak, J.I. (eds) Shallow Lakes ’95. Developments in Hydrobiology, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5648-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5648-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6382-1

  • Online ISBN: 978-94-011-5648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics